» Articles » PMID: 33716477

Classification with the Matrix-variate- Distribution

Overview
Date 2021 Mar 15
PMID 33716477
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Matrix-variate distributions can intuitively model the dependence structure of matrix-valued observations that arise in applications with multivariate time series, spatio-temporal or repeated measures. This paper develops an Expectation-Maximization algorithm for discriminant analysis and classification with matrix-variate -distributions. The methodology shows promise on simulated datasets or when applied to the forensic matching of fractured surfaces or the classification of functional Magnetic Resonance, satellite or hand gestures images.

Citing Articles

Construction of a poor prognosis prediction and visualization system for intracranial aneurysm endovascular intervention treatment based on an improved machine learning model.

Lei C, Fu A, Li B, Zhou S, Liu J, Cao Y Front Neurol. 2025; 15():1482119.

PMID: 39845936 PMC: 11752991. DOI: 10.3389/fneur.2024.1482119.


Quantitative matching of forensic evidence fragments using fracture surface topography and statistical learning.

Thompson G, Dawood B, Yu T, Lograsso B, Vanderkolk J, Maitra R Nat Commun. 2024; 15(1):7852.

PMID: 39245711 PMC: 11381546. DOI: 10.1038/s41467-024-51594-1.


Quantitative matching of forensic evidence fragments utilizing 3D microscopy analysis of fracture surface replicas.

Dawood B, Llosa-Vite C, Thompson G, Lograsso B, Claytor L, Vanderkolk J J Forensic Sci. 2022; 67(3):899-910.

PMID: 35253897 PMC: 9311802. DOI: 10.1111/1556-4029.15012.


A Matrix-Variate Model for Networks.

Billio M, Casarin R, Costola M, Iacopini M Front Artif Intell. 2021; 4:674166.

PMID: 34056581 PMC: 8158295. DOI: 10.3389/frai.2021.674166.


Simultaneous differential network analysis and classification for matrix-variate data with application to brain connectivity.

Chen H, Guo Y, He Y, Ji J, Liu L, Shi Y Biostatistics. 2021; 23(3):967-989.

PMID: 33769450 PMC: 9295187. DOI: 10.1093/biostatistics/kxab007.

References
1.
Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang H . Multilinear discriminant analysis for face recognition. IEEE Trans Image Process. 2007; 16(1):212-20. DOI: 10.1109/tip.2006.884929. View

2.
Maitra R . A re-defined and generalized percent-overlap-of-activation measure for studies of fMRI reproducibility and its use in identifying outlier activation maps. Neuroimage. 2009; 50(1):124-35. DOI: 10.1016/j.neuroimage.2009.11.070. View

3.
Maitra R . Assessing certainty of activation or inactivation in test-retest fMRI studies. Neuroimage. 2009; 47(1):88-97. DOI: 10.1016/j.neuroimage.2009.03.073. View

4.
Lu H, Plataniotis K, Venetsanopoulos A . Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition. IEEE Trans Neural Netw. 2008; 20(1):103-23. DOI: 10.1109/TNN.2008.2004625. View

5.
Maitra R, Roys S, Gullapalli R . Test-retest reliability estimation of functional MRI data. Magn Reson Med. 2002; 48(1):62-70. DOI: 10.1002/mrm.10191. View