» Articles » PMID: 33707433

Chemical Shift Prediction of RNA Imino Groups: Application Toward Characterizing RNA Excited States

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Mar 12
PMID 33707433
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

NH groups in proteins or nucleic acids are the most challenging target for chemical shift prediction. Here we show that the RNA base pair triplet motif dictates imino chemical shifts in its central base pair. A lookup table is established that links each type of base pair triplet to experimental chemical shifts of the central base pair, and can be used to predict imino chemical shifts of RNAs to remarkable accuracy. Strikingly, the semiempirical method can well interpret the variations of chemical shifts for different base pair triplets, and is even applicable to non-canonical motifs. This finding opens an avenue for predicting chemical shifts of more complicated RNA motifs. Furthermore, we combine the imino chemical shift prediction with NMR relaxation dispersion experiments targeting both N and H of the imino group, and verify a previously characterized excited state of P5abc subdomain including an earlier speculated non-native G•G mismatch.

Citing Articles

Dissecting the Conformational Heterogeneity of Stem-Loop Substructures of the Fifth Element in the 5'-Untranslated Region of SARS-CoV-2.

Mertinkus K, Oxenfarth A, Richter C, Wacker A, Mata C, Carazo J J Am Chem Soc. 2024; 146(44):30139-30154.

PMID: 39442924 PMC: 11544613. DOI: 10.1021/jacs.4c08406.


Imino chemical shift assignments of tRNA, tRNA and tRNA from Escherichia coli.

Yared M, Chagneau C, Barraud P Biomol NMR Assign. 2024; 18(2):323-331.

PMID: 39365419 PMC: 11511762. DOI: 10.1007/s12104-024-10207-0.


Peptide nucleic acids can form hairpins and bind RNA-binding proteins.

Zhong Y, Wilkinson-White L, Zhang E, Mohanty B, Zhang B, McRae M PLoS One. 2024; 19(9):e0310565.

PMID: 39283902 PMC: 11404819. DOI: 10.1371/journal.pone.0310565.


RNA structure determination: From 2D to 3D.

Deng J, Fang X, Huang L, Li S, Xu L, Ye K Fundam Res. 2024; 3(5):727-737.

PMID: 38933295 PMC: 11197651. DOI: 10.1016/j.fmre.2023.06.001.


Quantitative and systematic NMR measurements of sequence-dependent A-T Hoogsteen dynamics uncovers unique conformational specificity in the DNA double helix.

Manghrani A, Rangadurai A, Szekely O, Liu B, Guseva S, Al-Hashimi H bioRxiv. 2024; .

PMID: 38798635 PMC: 11118333. DOI: 10.1101/2024.05.15.594415.


References
1.
Palmer 3rd A, Massi F . Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev. 2006; 106(5):1700-19. DOI: 10.1021/cr0404287. View

2.
Lee J, Dethoff E, Al-Hashimi H . Invisible RNA state dynamically couples distant motifs. Proc Natl Acad Sci U S A. 2014; 111(26):9485-90. PMC: 4084437. DOI: 10.1073/pnas.1407969111. View

3.
Popenda M, Szachniuk M, Antczak M, Purzycka K, Lukasiak P, Bartol N . Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012; 40(14):e112. PMC: 3413140. DOI: 10.1093/nar/gks339. View

4.
Ulrich E, Akutsu H, Doreleijers J, Harano Y, Ioannidis Y, Lin J . BioMagResBank. Nucleic Acids Res. 2007; 36(Database issue):D402-8. PMC: 2238925. DOI: 10.1093/nar/gkm957. View

5.
PULLMAN B, Caillet J . Theoretical study on the proton chemical shifts of hydrogen bonded nucleic acid bases. Nucleic Acids Res. 1977; 4(1):99-116. PMC: 342412. DOI: 10.1093/nar/4.1.99. View