» Articles » PMID: 33693670

Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset

Overview
Journal ILAR J
Date 2021 Mar 11
PMID 33693670
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic modification of nonhuman primate (NHP) zygotes is a useful method for the development of NHP models of human diseases. This review summarizes the recent advances in the development of assisted reproductive and genetic manipulation techniques in NHP, providing the basis for the generation of genetically modified NHP disease models. In this study, we review assisted reproductive techniques, including ovarian stimulation, in vitro maturation of oocytes, in vitro fertilization, embryo culture, embryo transfer, and intracytoplasmic sperm injection protocols in marmosets. Furthermore, we review genetic manipulation techniques, including transgenic strategies, target gene knock-out and knock-in using gene editing protocols, and newly developed gene-editing approaches that may potentially impact the production of genetically manipulated NHP models. We further discuss the progress of assisted reproductive and genetic manipulation techniques in NHP; future prospects on genetically modified NHP models for biomedical research are also highlighted.

Citing Articles

In vitro matured oocytes have a higher developmental potential than in vivo matured oocytes after hormonal ovarian stimulation in Callithrix jacchus.

Tkachenko O, Kahland T, Lindenwald D, Heistermann M, Drummer C, Daskalaki M J Ovarian Res. 2024; 17(1):120.

PMID: 38824584 PMC: 11144324. DOI: 10.1186/s13048-024-01441-0.


Production of marmoset eggs and embryos from xenotransplanted ovary tissues.

Hirayama R, Taketsuru H, Nakatsukasa E, Natsume R, Saito N, Adachi S Sci Rep. 2023; 13(1):18196.

PMID: 37875516 PMC: 10598121. DOI: 10.1038/s41598-023-45224-x.


Review of Environmental and Health Factors Impacting Captive Common Marmoset Welfare in the Biomedical Research Setting.

Burns M Vet Sci. 2023; 10(9).

PMID: 37756090 PMC: 10535419. DOI: 10.3390/vetsci10090568.


mRNA-based generation of marmoset PGCLCs capable of differentiation into gonocyte-like cells.

Kubiura-Ichimaru M, Penfold C, Kojima K, Dollet C, Yabukami H, Semi K Stem Cell Reports. 2023; 18(10):1987-2002.

PMID: 37683645 PMC: 10656353. DOI: 10.1016/j.stemcr.2023.08.006.


The neurobiology of vocal communication in marmosets.

Grijseels D, Prendergast B, Gorman J, Miller C Ann N Y Acad Sci. 2023; 1528(1):13-28.

PMID: 37615212 PMC: 10592205. DOI: 10.1111/nyas.15057.


References
1.
Chan A, Luetjens C, Dominko T, Ramalho-Santos J, Simerly C, Hewitson L . TransgenICSI reviewed: foreign DNA transmission by intracytoplasmic sperm injection in rhesus monkey. Mol Reprod Dev. 2000; 56(2 Suppl):325-8. DOI: 10.1002/(SICI)1098-2795(200006)56:2+<325::AID-MRD25>3.0.CO;2-N. View

2.
Wolfgang M, Eisele S, Browne M, Schotzko M, Garthwaite M, Durning M . Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc Natl Acad Sci U S A. 2001; 98(19):10728-32. PMC: 58541. DOI: 10.1073/pnas.181336098. View

3.
Ting D, Kyba M, Daley G . Inducible transgene expression in mouse stem cells. Methods Mol Med. 2004; 105:23-46. DOI: 10.1385/1-59259-826-9:023. View

4.
Kwart D, Gregg A, Scheckel C, Murphy E, Paquet D, Duffield M . A Large Panel of Isogenic APP and PSEN1 Mutant Human iPSC Neurons Reveals Shared Endosomal Abnormalities Mediated by APP β-CTFs, Not Aβ. Neuron. 2019; 104(5):1022. DOI: 10.1016/j.neuron.2019.11.010. View

5.
Watanabe T, Yamazaki S, Yoneda N, Shinohara H, Tomioka I, Higuchi Y . Highly efficient induction of primate iPS cells by combining RNA transfection and chemical compounds. Genes Cells. 2019; 24(7):473-484. PMC: 6852476. DOI: 10.1111/gtc.12702. View