» Articles » PMID: 33688046

Photosynthesis Tunes Quantum-mechanical Mixing of Electronic and Vibrational States to Steer Exciton Energy Transfer

Overview
Specialty Science
Date 2021 Mar 10
PMID 33688046
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Photosynthetic species evolved to protect their light-harvesting apparatus from photoxidative damage driven by intracellular redox conditions or environmental conditions. The Fenna-Matthews-Olson (FMO) pigment-protein complex from green sulfur bacteria exhibits redox-dependent quenching behavior partially due to two internal cysteine residues. Here, we show evidence that a photosynthetic complex exploits the quantum mechanics of vibronic mixing to activate an oxidative photoprotective mechanism. We use two-dimensional electronic spectroscopy (2DES) to capture energy transfer dynamics in wild-type and cysteine-deficient FMO mutant proteins under both reducing and oxidizing conditions. Under reducing conditions, we find equal energy transfer through the exciton 4-1 and 4-2-1 pathways because the exciton 4-1 energy gap is vibronically coupled with a bacteriochlorophyll- vibrational mode. Under oxidizing conditions, however, the resonance of the exciton 4-1 energy gap is detuned from the vibrational mode, causing excitons to preferentially steer through the indirect 4-2-1 pathway to increase the likelihood of exciton quenching. We use a Redfield model to show that the complex achieves this effect by tuning the site III energy via the redox state of its internal cysteine residues. This result shows how pigment-protein complexes exploit the quantum mechanics of vibronic coupling to steer energy transfer.

Citing Articles

Investigation of quantum trajectories in photosynthetic light harvesting through a quantum stochastic approach.

Uthailiang T, Suntijitrungruang O, Issarakul P, Pongkitiwanichakul P, Boonchui S Sci Rep. 2025; 15(1):5220.

PMID: 39939706 PMC: 11822076. DOI: 10.1038/s41598-025-89474-3.


Rapid Wide-Field Correlative Mapping of Electronic and Vibrational Ultrafast Dynamics in Solids.

Wu R, Zhang Y, Shahjahan M, Harel E ACS Nano. 2025; 19(7):7064-7074.

PMID: 39928120 PMC: 11867015. DOI: 10.1021/acsnano.4c15397.


Resonant Vibrational Enhancement of Downhill Energy Transfer in the -Phycocyanin Chromophore Dimer.

Sohoni S, Wu P, Shen Q, Lloyd L, MacGregor-Chatwin C, Hitchcock A J Phys Chem Lett. 2024; 15(46):11569-11576.

PMID: 39527753 PMC: 11587079. DOI: 10.1021/acs.jpclett.4c02386.


Exploring the Role of Excited States' Degeneracy on Vibronic Coupling with Atomic-Scale Optics.

Vasilev K, Canola S, Scheurer F, Boeglin A, Lotthammer F, Cherioux F ACS Nano. 2024; 18(41):28052-28059.

PMID: 39363581 PMC: 11483947. DOI: 10.1021/acsnano.4c07136.


Examining Sound, Light, and Vibrations as Tools to Manage Microbes and Support Holobionts, Ecosystems, and Technologies.

Dietert R, Dietert J Microorganisms. 2024; 12(5).

PMID: 38792734 PMC: 11123986. DOI: 10.3390/microorganisms12050905.


References
1.
Yeh S, Hoehn R, Allodi M, Engel G, Kais S . Elucidation of near-resonance vibronic coherence lifetimes by nonadiabatic electronic-vibrational state character mixing. Proc Natl Acad Sci U S A. 2018; 116(37):18263-18268. PMC: 6744865. DOI: 10.1073/pnas.1701390115. View

2.
Gray H, Winkler J . Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc Natl Acad Sci U S A. 2015; 112(35):10920-5. PMC: 4568215. DOI: 10.1073/pnas.1512704112. View

3.
Dahlberg P, Ting P, Massey S, Allodi M, Martin E, Hunter C . Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells. Nat Commun. 2017; 8(1):988. PMC: 5715167. DOI: 10.1038/s41467-017-01124-z. View

4.
Thyrhaug E, Tempelaar R, Alcocer M, Zidek K, Bina D, Knoester J . Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex. Nat Chem. 2018; 10(7):780-786. DOI: 10.1038/s41557-018-0060-5. View

5.
Panitchayangkoon G, Hayes D, Fransted K, Caram J, Harel E, Wen J . Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci U S A. 2010; 107(29):12766-70. PMC: 2919932. DOI: 10.1073/pnas.1005484107. View