» Articles » PMID: 33686223

GDSL-domain Proteins Have Key Roles in Suberin Polymerization and Degradation

Abstract

Plant roots acquire nutrients and water while managing interactions with the soil microbiota. The root endodermis provides an extracellular diffusion barrier through a network of lignified cell walls called Casparian strips, supported by subsequent formation of suberin lamellae. Whereas lignification is thought to be irreversible, suberin lamellae display plasticity, which is crucial for root adaptative responses. Although suberin is a major plant polymer, fundamental aspects of its biosynthesis and turnover have remained obscure. Plants shape their root system via lateral root formation, an auxin-induced process requiring local breaking and re-sealing of endodermal lignin and suberin barriers. Here, we show that differentiated endodermal cells have a specific, auxin-mediated transcriptional response dominated by cell wall remodelling genes. We identified two sets of auxin-regulated GDSL lipases. One is required for suberin synthesis, while the other can drive suberin degradation. These enzymes have key roles in suberization, driving root suberin plasticity.

Citing Articles

Rhizobacteria protective hydrogel to promote plant growth and adaption to acidic soil.

Feng Q, Luo Y, Liang M, Cao Y, Wang L, Liu C Nat Commun. 2025; 16(1):1684.

PMID: 39956869 PMC: 11830790. DOI: 10.1038/s41467-025-56988-3.


Research Progress and Hotspots Analysis of Apoplastic Barriers in the Roots of Plants Based on Bibliometrics from 2003 to 2023.

Qin C, Li R, Tan Z, Zhang J, Sun Y, Han J Plants (Basel). 2024; 13(23).

PMID: 39683081 PMC: 11644662. DOI: 10.3390/plants13233285.


Exploring the function of plant root diffusion barriers in sealing and shielding for environmental adaptation.

Gao Y, Su Y, Chao D Nat Plants. 2024; 10(12):1865-1874.

PMID: 39638869 DOI: 10.1038/s41477-024-01842-5.


Multiomics dissection of Brassica napus L. lateral roots and endophytes interactions under phosphorus starvation.

Liu C, Bai Z, Luo Y, Zhang Y, Wang Y, Liu H Nat Commun. 2024; 15(1):9732.

PMID: 39523413 PMC: 11551189. DOI: 10.1038/s41467-024-54112-5.


Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress.

Ling Hu , Lv X, Zhang Y, Du W, Fan S, Kong L Int J Mol Sci. 2024; 25(19).

PMID: 39408761 PMC: 11476764. DOI: 10.3390/ijms251910430.


References
1.
Castrillo G, Teixeira P, Herrera Paredes S, Law T, de Lorenzo L, Feltcher M . Root microbiota drive direct integration of phosphate stress and immunity. Nature. 2017; 543(7646):513-518. PMC: 5364063. DOI: 10.1038/nature21417. View

2.
Duran P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P . Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell. 2018; 175(4):973-983.e14. PMC: 6218654. DOI: 10.1016/j.cell.2018.10.020. View

3.
Hassani M, Duran P, Hacquard S . Microbial interactions within the plant holobiont. Microbiome. 2018; 6(1):58. PMC: 5870681. DOI: 10.1186/s40168-018-0445-0. View

4.
Banda J, Bellande K, von Wangenheim D, Goh T, Guyomarch S, Laplaze L . Lateral Root Formation in Arabidopsis: A Well-Ordered LRexit. Trends Plant Sci. 2019; 24(9):826-839. DOI: 10.1016/j.tplants.2019.06.015. View

5.
Stoeckle D, Thellmann M, Vermeer J . Breakout-lateral root emergence in Arabidopsis thaliana. Curr Opin Plant Biol. 2017; 41:67-72. DOI: 10.1016/j.pbi.2017.09.005. View