» Articles » PMID: 33681550

Emerging Technologies for Monitoring Plant Health in Vivo

Overview
Journal ACS Omega
Specialty Chemistry
Date 2021 Mar 8
PMID 33681550
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

In the coming decades, increasing agricultural productivity is all-important. As the global population is growing rapidly and putting increased demand on food supply, poor soil quality, drought, flooding, increasing temperatures, and novel plant diseases are negatively impacting yields worldwide. One method to increase yields is plant health monitoring and rapid detection of disease, nutrient deficiencies, or drought. Monitoring plant health will allow for precise application of agrichemicals, fertilizers, and water in order to maximize yields. In vivo plant sensors are an emerging technology with the potential to increase agricultural productivity. In this mini-review, we discuss three major approaches of in vivo sensors for plant health monitoring, including genetic engineering, imaging and spectroscopy, and electrical.

Citing Articles

Cutting-Edge Sensor Design: MIP Nanoparticle-Functionalized Nanofibers for Gas-Phase Detection of Limonene in Predictive Agriculture.

Molinari F, Marelli M, Berretti E, Serrecchia S, Coppola R, De Cesare F Polymers (Basel). 2025; 17(3).

PMID: 39940528 PMC: 11820196. DOI: 10.3390/polym17030326.


Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo.

Cohen Z, Williams R ACS Nano. 2024; 18(52):35164-35181.

PMID: 39696968 PMC: 11697343. DOI: 10.1021/acsnano.4c13076.


Electrochemical microfluidic sensing platforms for biosecurity analysis.

Guan Z, Liu Q, Ma C, Du Y Anal Bioanal Chem. 2024; 416(21):4663-4677.

PMID: 38523160 DOI: 10.1007/s00216-024-05256-2.


Field Plant Monitoring from Macro to Micro Scale: Feasibility and Validation of Combined Field Monitoring Approaches from Remote to in Vivo to Cope with Drought Stress in Tomato.

Vurro F, Croci M, Impollonia G, Marchetti E, Gracia-Romero A, Bettelli M Plants (Basel). 2023; 12(22).

PMID: 38005747 PMC: 10674827. DOI: 10.3390/plants12223851.


Explorative Image Analysis of Methylene Blue Interactions with Gelatin in Polypropylene Nonwoven Fabric Membranes: A Potential Future Tool for the Characterization of the Diffusion Process.

Zidek J, Sudakova A, Smilek J, Nguyen D, Ngoc H, Ha L Gels. 2023; 9(11).

PMID: 37998978 PMC: 10671130. DOI: 10.3390/gels9110888.


References
1.
Montanha G, Rodrigues E, Marques J, de Almeida E, Reis A, Pereira de Carvalho H . X-ray fluorescence spectroscopy (XRF) applied to plant science: challenges towards in vivo analysis of plants. Metallomics. 2019; 12(2):183-192. DOI: 10.1039/c9mt00237e. View

2.
Coppede N, Janni M, Bettelli M, Maida C, Gentile F, Villani M . An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Sci Rep. 2017; 7(1):16195. PMC: 5700984. DOI: 10.1038/s41598-017-16217-4. View

3.
Janni M, Coppede N, Bettelli M, Briglia N, Petrozza A, Summerer S . Phenotyping for the Early Detection of Drought Stress in Tomato. Plant Phenomics. 2020; 2019:6168209. PMC: 7706337. DOI: 10.34133/2019/6168209. View

4.
Martinez-Jarquin S, Herrera-Ubaldo H, de Folter S, Winkler R . In vivo monitoring of nicotine biosynthesis in tobacco leaves by low-temperature plasma mass spectrometry. Talanta. 2018; 185:324-327. DOI: 10.1016/j.talanta.2018.03.071. View

5.
Fethe M, Liu W, Burris J, Millwood R, Mazarei M, Rudis M . The performance of pathogenic bacterial phytosensing transgenic tobacco in the field. Plant Biotechnol J. 2014; 12(6):755-64. DOI: 10.1111/pbi.12180. View