» Articles » PMID: 33672042

Interaction of Conazole Pesticides Epoxiconazole and Prothioconazole with Human and Bovine Serum Albumin Studied Using Spectroscopic Methods and Molecular Modeling

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2021 Mar 6
PMID 33672042
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The interactions of epoxiconazole and prothioconazole with human serum albumin and bovine serum albumin were investigated using spectroscopic methods complemented with molecular modeling. Spectroscopic techniques showed the formation of pesticide/serum albumin complexes with the static type as the dominant mechanism. The association constants ranged from 3.80 × 10-6.45 × 10 L/mol depending on the pesticide molecule (epoxiconazole, prothioconazole) and albumin type (human or bovine serum albumin). The calculated thermodynamic parameters revealed that the binding of pesticides into serum albumin macromolecules mainly depended on hydrogen bonds and van der Waals interactions. Synchronous fluorescence spectroscopy and the competitive experiments method showed that pesticides bind to subdomain IIA, near tryptophan; in the case of bovine serum albumin also on the macromolecule surface. Concerning prothioconazole, we observed the existence of an additional binding site at the junction of domains I and III of serum albumin macromolecules. These observations were corroborated well by molecular modeling predictions. The conformation changes in secondary structure were characterized by circular dichroism, three-dimensional fluorescence, and UV/VIS absorption methods.

Citing Articles

The hemostatic molecular mechanism of Sanguisorbae Radix's pharmacological active components based on HSA: Spectroscopic investigations, molecular docking and dynamics simulation.

Xu F, Shen Y, Pan Z, Zhou X, Gu W, Dong J Heliyon. 2024; 10(17):e37020.

PMID: 39296229 PMC: 11407948. DOI: 10.1016/j.heliyon.2024.e37020.


Probing the Interaction between Isoflucypram Fungicides and Human Serum Albumin: Multiple Spectroscopic and Molecular Modeling Investigations.

Li X, Yan X, Yang D, Chen S, Yuan H Int J Mol Sci. 2023; 24(15).

PMID: 37569896 PMC: 10420152. DOI: 10.3390/ijms241512521.


Chitosan Oligosaccharide Modified Bovine Serum Albumin Nanoparticles for Improving Oral Bioavailability of Naringenin.

Fang R, Liao Y, Qiu H, Liu Y, Lin S, Chen H Curr Drug Deliv. 2023; 21(8):1142-1150.

PMID: 37464826 DOI: 10.2174/1567201820666230718143726.


Oral Exposure to Epoxiconazole Disturbed the Gut Micro-Environment and Metabolic Profiling in Male Mice.

Weng Y, Xu T, Wang C, Jin Y Metabolites. 2023; 13(4).

PMID: 37110180 PMC: 10144212. DOI: 10.3390/metabo13040522.

References
1.
Siddiqi M, Nusrat S, Alam P, Malik S, Chaturvedi S, Ajmal M . Investigating the site selective binding of busulfan to human serum albumin: Biophysical and molecular docking approaches. Int J Biol Macromol. 2017; 107(Pt B):1414-1421. DOI: 10.1016/j.ijbiomac.2017.10.006. View

2.
Kandagal P, Ashoka S, Seetharamappa J, Shaikh S, Jadegoud Y, Ijare O . Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal. 2006; 41(2):393-9. DOI: 10.1016/j.jpba.2005.11.037. View

3.
Lee P, Wu X . Review: modifications of human serum albumin and their binding effect. Curr Pharm Des. 2015; 21(14):1862-5. PMC: 4654954. DOI: 10.2174/1381612821666150302115025. View

4.
Vekshin I . [Separation of the tyrosine and tryptophan components of fluorescence using synchronous scanning method]. Biofizika. 1996; 41(6):1176-9. View

5.
Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P . The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2006; 57(12):787-96. DOI: 10.1080/15216540500404093. View