» Articles » PMID: 33658490

Lipid Regulation of HERG1 Channel Function

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Mar 4
PMID 33658490
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The lipid regulation of mammalian ion channel function has emerged as a fundamental mechanism in the control of electrical signalling and transport specificity in various cell types. In this work, we combine molecular dynamics simulations, mutagenesis, and electrophysiology to provide mechanistic insights into how lipophilic molecules (ceramide-sphingolipid probe) alter gating kinetics and K currents of hERG1. We show that the sphingolipid probe induced a significant left shift of activation voltage, faster deactivation rates, and current blockade comparable to traditional hERG1 blockers. Microseconds-long MD simulations followed by experimental mutagenesis elucidated ceramide specific binding locations at the interface between the pore and voltage sensing domains. This region constitutes a unique crevice present in mammalian channels with a non-swapped topology. The combined experimental and simulation data provide evidence for ceramide-induced allosteric modulation of the channel by a conformational selection mechanism.

Citing Articles

Targeting the hERG1/β1 integrin complex in lipid rafts potentiates statins anti-cancer activity in pancreatic cancer.

Duranti C, Iorio J, Manganelli V, Bagni G, Colasurdo R, Lottini T Cell Death Discov. 2025; 11(1):39.

PMID: 39900574 PMC: 11790905. DOI: 10.1038/s41420-025-02321-2.


Novel insights into the modulation of the voltage-gated potassium channel K1.3 activation gating by membrane ceramides.

Cs Szabo B, Szabo M, Nagy P, Varga Z, Panyi G, Kovacs T J Lipid Res. 2024; 65(8):100596.

PMID: 39019344 PMC: 11367112. DOI: 10.1016/j.jlr.2024.100596.


Alchemical Free Energy Calculations on Membrane-Associated Proteins.

Papadourakis M, Sinenka H, Matricon P, Henin J, Brannigan G, Perez-Benito L J Chem Theory Comput. 2023; 19(21):7437-7458.

PMID: 37902715 PMC: 11017255. DOI: 10.1021/acs.jctc.3c00365.


Targeting Lipid-Ion Channel Interactions in Cardiovascular Disease.

Hudgins E, Bonar A, Nguyen T, Fancher I Front Cardiovasc Med. 2022; 9:876634.

PMID: 35600482 PMC: 9120415. DOI: 10.3389/fcvm.2022.876634.


Insights into lipid-protein interactions from computer simulations.

Tieleman D, Sejdiu B, Cino E, Smith P, Barreto-Ojeda E, Khan H Biophys Rev. 2022; 13(6):1019-1027.

PMID: 35047089 PMC: 8724345. DOI: 10.1007/s12551-021-00876-9.


References
1.
Chapman H, Ramstrom C, Korhonen L, Laine M, Wann K, Lindholm D . Downregulation of the HERG (KCNH2) K(+) channel by ceramide: evidence for ubiquitin-mediated lysosomal degradation. J Cell Sci. 2005; 118(Pt 22):5325-34. DOI: 10.1242/jcs.02635. View

2.
Lees-Miller J, Guo J, Wang Y, Perissinotti L, Noskov S, Duff H . Ivabradine prolongs phase 3 of cardiac repolarization and blocks the hERG1 (KCNH2) current over a concentration-range overlapping with that required to block HCN4. J Mol Cell Cardiol. 2015; 85:71-8. DOI: 10.1016/j.yjmcc.2015.05.009. View

3.
Liin S, Yazdi S, Ramentol R, Barro-Soria R, Larsson H . Mechanisms Underlying the Dual Effect of Polyunsaturated Fatty Acid Analogs on Kv7.1. Cell Rep. 2018; 24(11):2908-2918. PMC: 6190921. DOI: 10.1016/j.celrep.2018.08.031. View

4.
Ramentol R, Perez M, Larsson H . Gating mechanism of hyperpolarization-activated HCN pacemaker channels. Nat Commun. 2020; 11(1):1419. PMC: 7078272. DOI: 10.1038/s41467-020-15233-9. View

5.
Wang E, Klauda J . Molecular Dynamics Simulations of Ceramide and Ceramide-Phosphatidylcholine Bilayers. J Phys Chem B. 2017; 121(43):10091-10104. DOI: 10.1021/acs.jpcb.7b08967. View