MiR-133a-3p Inhibits Scar Formation in Scalded Mice and Suppresses the Proliferation and Migration of Scar Derived-fibroblasts by Targeting Connective Tissue Growth Factor
Overview
Affiliations
Excessive scar formation post burn injury can cause great pain to the patients. MiR-133a-3p has been demonstrated to be anti-fibrotic in some fibrosis-related diseases. However, its possible role in scar formation has not been elucidated yet. In present study, the effect of miR-133a-3p on scar formation was investigated in a scalded model of mice. Moreover, the function of miR-133a-3p on proliferation and migration of scar-derived fibroblasts (SFs) was studied in vitro. It was found that miR-133a-3p was dramatically downregulated in scar tissue of scalded mice. Upregulation of miR-133a-3p by miR-133a-3p agomir obviously inhibited the scar formation in scalded mice. Histological staining showed that upregulation of miR-133a-3p attenuated the excessive deposition of collagen in scar tissue of scalded mice. In vitro study showed that upregulation of miR-133a-3p effectively suppressed the proliferation and migration of SFs. Besides, upregulation of miR-133a-3p attenuated the protein levels of α-smooth muscle actin (α-SMA) and collagen I, indicating that miR-133a-3p could suppress the activation of SFs. The expression of connective tissue growth factor (CTGF), a critical mediator in cell proliferation, migration and extracellular matrix (ECM) synthesis, was also downregulated by the upregulation of miR-133a-3p. Luciferase reporter assay validated that CTGF was directly targeted by miR-133a-3p. In addition, overexpression of CTGF abolished the effect of miR-133a-3p on inhibiting the proliferation, migration and activation of SFs, indicating that miR-133a-3p functioned by targeting CTGF. Therefore, miR-133a-3p might be a promising target for treating pathological scars.
α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis.
Kanno Y, Shu E Life (Basel). 2022; 12(3).
PMID: 35330147 PMC: 8953682. DOI: 10.3390/life12030396.