» Articles » PMID: 33644764

Minimax Pareto Fairness: A Multi Objective Perspective

Overview
Date 2021 Mar 1
PMID 33644764
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

In this work we formulate and formally characterize group fairness as a multi-objective optimization problem, where each sensitive group risk is a separate objective. We propose a fairness criterion where a classifier achieves minimax risk and is Pareto-efficient w.r.t. all groups, avoiding unnecessary harm, and can lead to the best zero-gap model if policy dictates so. We provide a simple optimization algorithm compatible with deep neural networks to satisfy these constraints. Since our method does not require test-time access to sensitive attributes, it can be applied to reduce worst-case classification errors between outcomes in unbalanced classification problems. We test the proposed methodology on real case-studies of predicting income, ICU patient mortality, skin lesions classification, and assessing credit risk, demonstrating how our framework compares favorably to other approaches.

Citing Articles

Statistical Inference for Maximin Effects: Identifying Stable Associations across Multiple Studies.

Guo Z J Am Stat Assoc. 2024; 119(547):1968-1984.

PMID: 39651449 PMC: 11622595. DOI: 10.1080/01621459.2023.2233162.


Enhancing the fairness of AI prediction models by Quasi-Pareto improvement among heterogeneous thyroid nodule population.

Yao S, Dai F, Sun P, Zhang W, Qian B, Lu H Nat Commun. 2024; 15(1):1958.

PMID: 38438371 PMC: 10912763. DOI: 10.1038/s41467-024-44906-y.


An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function.

Bot R, Csetnek E, Sedlmayer M Comput Optim Appl. 2023; 86(3):925-966.

PMID: 37969869 PMC: 10643324. DOI: 10.1007/s10589-022-00378-8.


How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts.

Wang H, Hong J, Zhou J, Wang Z Transact Mach Learn Res. 2023; 2023.

PMID: 37056515 PMC: 10097499.


Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset.

Meng C, Trinh L, Xu N, Enouen J, Liu Y Sci Rep. 2022; 12(1):7166.

PMID: 35504931 PMC: 9065125. DOI: 10.1038/s41598-022-11012-2.


References
1.
Johnson A, Pollard T, Shen L, Lehman L, Feng M, Ghassemi M . MIMIC-III, a freely accessible critical care database. Sci Data. 2016; 3:160035. PMC: 4878278. DOI: 10.1038/sdata.2016.35. View

2.
Tschandl P, Rosendahl C, Kittler H . The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data. 2018; 5:180161. PMC: 6091241. DOI: 10.1038/sdata.2018.161. View