» Articles » PMID: 33644003

Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells

Overview
Journal Front Chem
Specialty Chemistry
Date 2021 Mar 1
PMID 33644003
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.

Citing Articles

Fabrication and characterization of electrically conducting electrochemically synthesized polypyrrole-based enzymatic biofuel cell anode with biocompatible redox mediator vitamin K.

Khan M, Inamuddin Sci Rep. 2024; 14(1):3324.

PMID: 38336966 PMC: 10858164. DOI: 10.1038/s41598-024-53005-3.


Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors.

Cao L, Chen J, Pang J, Qu H, Liu J, Gao J Molecules. 2024; 29(1).

PMID: 38202838 PMC: 10780655. DOI: 10.3390/molecules29010257.


Helical versus Flat Bis-Ferrocenyl End-Capped Peptides: The Influence of the Molecular Skeleton on Redox Properties.

Santi S, Biondi B, Cardena R, Bisello A, Schiesari R, Tomelleri S Molecules. 2022; 27(18).

PMID: 36144860 PMC: 9503075. DOI: 10.3390/molecules27186128.


Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect.

Plekhanova Y, Rai M, Reshetilov A 3 Biotech. 2022; 12(9):231.

PMID: 35996672 PMC: 9391563. DOI: 10.1007/s13205-022-03260-w.


Direct Bioelectrocatalytic Oxidation of Glucose by Membrane Fractions in PEDOT:PSS/TEG-Modified Biosensors.

Kitova A, Tarasov S, Plekhanova Y, Bykov A, Reshetilov A Biosensors (Basel). 2021; 11(5).

PMID: 34066417 PMC: 8148135. DOI: 10.3390/bios11050144.

References
1.
Campbell A, Jeong Y, Geier S, Koepsel R, Russell A, Islam M . Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes. ACS Appl Mater Interfaces. 2015; 7(7):4056-65. DOI: 10.1021/am507801x. View

2.
Linko V, Eerikainen M, Kostiainen M . A modular DNA origami-based enzyme cascade nanoreactor. Chem Commun (Camb). 2015; 51(25):5351-4. DOI: 10.1039/c4cc08472a. View

3.
Yan L, Zhao F, Li S, Hu Z, Zhao Y . Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale. 2010; 3(2):362-82. DOI: 10.1039/c0nr00647e. View

4.
Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, Ludwig R . Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens Bioelectron. 2011; 31(1):219-25. DOI: 10.1016/j.bios.2011.10.020. View

5.
Tasca F, Farias D, Castro C, Acuna-Rougier C, Antiochia R . Bilirubin Oxidase from Myrothecium verrucaria Physically Absorbed on Graphite Electrodes. Insights into the Alternative Resting Form and the Sources of Activity Loss. PLoS One. 2015; 10(7):e0132181. PMC: 4510396. DOI: 10.1371/journal.pone.0132181. View