» Articles » PMID: 33643198

Physiological Ripples Associated With Sleep Spindles Can Be Identified in Patients With Refractory Epilepsy Beyond Mesio-Temporal Structures

Overview
Journal Front Neurol
Specialty Neurology
Date 2021 Mar 1
PMID 33643198
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

High frequency oscillations (HFO) are promising biomarkers of epileptic tissue. While group analysis suggested a correlation between surgical removal of HFO generating tissue and seizure free outcome, HFO could not predict seizure outcome on an individual patient level. One possible explanation is the lack of differentiation between physiological and epileptic HFO. In the mesio-temporal lobe, a proportion of physiological ripples can be identified by their association with scalp sleep spindles. Spike associated ripples in contrast can be considered epileptic. This study investigated whether categorizing ripples by the co-occurrence with sleep spindles or spikes improves outcome prediction after surgery. Additionally, it aimed to investigate whether spindle-ripple association is limited to the mesio-temporal lobe structures or visible across the whole brain. We retrospectively analyzed EEG of 31 patients with chronic intracranial EEG. Sleep spindles in scalp EEG and ripples and epileptic spikes in iEEG were automatically detected. Three ripple subtypes were obtained: SpindleR, Non-SpindleR, and SpikeR. Rate ratios between removed and non-removed brain areas were calculated. We compared the distinct ripple subtypes and their rates in different brain regions, inside and outside seizure onset areas and between patients with good and poor seizure outcome. SpindleR were found across all brain regions. SpikeR had significantly higher rates in the SOZ than in Non-SOZ channels. A significant positive correlation between removal of ripple-events and good outcome was found for the mixed ripple group (r = 0.43, = 0.017) and for ripples not associated with spindles (r=0.40, = 0.044). Also, a significantly high proportion of spikes associated with ripples were removed in seizure free patients ( = 0.036). SpindleR are found in mesio-temporal and neocortical structures, indicating that ripple-spindle-coupling might have functional importance beyond mesio-temporal structures. Overall, the proportion of SpindleR was low and separating spindle and spike associated ripples did not improve outcome prediction in our patient group. SpindleR analysis therefore can be a tool to identify physiological events but needs to be used in combination with other methods to have clinical relevance.

Citing Articles

Pathological and Physiological High-frequency Oscillations on Electroencephalography in Patients with Epilepsy.

Ye H, Chen C, Weiss S, Wang S Neurosci Bull. 2023; 40(5):609-620.

PMID: 37999861 PMC: 11127900. DOI: 10.1007/s12264-023-01150-6.


Association between Removal of High-Frequency Oscillations and the Effect of Epilepsy Surgery: A Meta-Analysis.

Qu Z, Luo J, Chen X, Zhang Y, Yu S, Shu H J Neurol Surg A Cent Eur Neurosurg. 2023; 85(3):294-301.

PMID: 37918885 PMC: 10984718. DOI: 10.1055/a-2202-9344.


Mesial-Temporal Epileptic Ripples Correlate With Verbal Memory Impairment.

Bruder J, Wagner K, Lachner-Piza D, Klotz K, Schulze-Bonhage A, Jacobs J Front Neurol. 2022; 13:876024.

PMID: 35720106 PMC: 9204013. DOI: 10.3389/fneur.2022.876024.

References
1.
Nonoda Y, Miyakoshi M, Ojeda A, Makeig S, Juhasz C, Sood S . Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves. Clin Neurophysiol. 2016; 127(6):2489-99. PMC: 4867192. DOI: 10.1016/j.clinph.2016.03.022. View

2.
Jacobs J, Kobayashi K, Gotman J . High-frequency changes during interictal spikes detected by time-frequency analysis. Clin Neurophysiol. 2010; 122(1):32-42. PMC: 3774652. DOI: 10.1016/j.clinph.2010.05.033. View

3.
Tamilia E, Dirodi M, Alhilani M, Grant P, Madsen J, Stufflebeam S . Scalp ripples as prognostic biomarkers of epileptogenicity in pediatric surgery. Ann Clin Transl Neurol. 2020; 7(3):329-342. PMC: 7086004. DOI: 10.1002/acn3.50994. View

4.
Kuhnke N, Schwind J, Dumpelmann M, Mader M, Schulze-Bonhage A, Jacobs J . High Frequency Oscillations in the Ripple Band (80-250 Hz) in Scalp EEG: Higher Density of Electrodes Allows for Better Localization of the Seizure Onset Zone. Brain Topogr. 2018; 31(6):1059-1072. DOI: 10.1007/s10548-018-0658-3. View

5.
Jacobs J, Zijlmans M, Zelmann R, Chatillon C, Hall J, Olivier A . High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol. 2010; 67(2):209-20. PMC: 3769290. DOI: 10.1002/ana.21847. View