» Articles » PMID: 33637700

Improved Protein Structure Refinement Guided by Deep Learning Based Accuracy Estimation

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Feb 27
PMID 33637700
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

We develop a deep learning framework (DeepAccNet) that estimates per-residue accuracy and residue-residue distance signed error in protein models and uses these predictions to guide Rosetta protein structure refinement. The network uses 3D convolutions to evaluate local atomic environments followed by 2D convolutions to provide their global contexts and outperforms other methods that similarly predict the accuracy of protein structure models. Overall accuracy predictions for X-ray and cryoEM structures in the PDB correlate with their resolution, and the network should be broadly useful for assessing the accuracy of both predicted structure models and experimentally determined structures and identifying specific regions likely to be in error. Incorporation of the accuracy predictions at multiple stages in the Rosetta refinement protocol considerably increased the accuracy of the resulting protein structure models, illustrating how deep learning can improve search for global energy minima of biomolecules.

Citing Articles

Design of high-affinity binders to immune modulating receptors for cancer immunotherapy.

Yang W, Hicks D, Ghosh A, Schwartze T, Conventry B, Goreshnik I Nat Commun. 2025; 16(1):2001.

PMID: 40011465 PMC: 11865580. DOI: 10.1038/s41467-025-57192-z.


AI-based quality assessment methods for protein structure models from cryo-EM.

Zhu H, Terashi G, Farheen F, Nakamura T, Kihara D Curr Res Struct Biol. 2025; 9:100164.

PMID: 39996138 PMC: 11848767. DOI: 10.1016/j.crstbi.2025.100164.


Physical-aware model accuracy estimation for protein complex using deep learning method.

Wang H, Sun M, Xie L, Liu D, Zhang G Comput Struct Biotechnol J. 2025; 27:478-487.

PMID: 39916698 PMC: 11799971. DOI: 10.1016/j.csbj.2025.01.017.


Peripheral membrane protein endophilin B1 probes, perturbs and permeabilizes lipid bilayers.

Thorlacius A, Rulev M, Sundberg O, Sundborger-Lunna A Commun Biol. 2025; 8(1):182.

PMID: 39910321 PMC: 11799418. DOI: 10.1038/s42003-025-07610-1.


AlphaFold-guided molecular replacement for solving challenging crystal structures.

Wang W, Gong Z, Hendrickson W Acta Crystallogr D Struct Biol. 2024; 81(Pt 1):4-21.

PMID: 39711199 PMC: 11740581. DOI: 10.1107/S2059798324011999.


References
1.
Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T . Assessment of template based protein structure predictions in CASP9. Proteins. 2011; 79 Suppl 10:37-58. DOI: 10.1002/prot.23177. View

2.
Xu J . Distance-based protein folding powered by deep learning. Proc Natl Acad Sci U S A. 2019; 116(34):16856-16865. PMC: 6708335. DOI: 10.1073/pnas.1821309116. View

3.
Uziela K, Shu N, Wallner B, Elofsson A . ProQ3: Improved model quality assessments using Rosetta energy terms. Sci Rep. 2016; 6:33509. PMC: 5048106. DOI: 10.1038/srep33509. View

4.
Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D . Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A. 2020; 117(3):1496-1503. PMC: 6983395. DOI: 10.1073/pnas.1914677117. View

5.
Senior A, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T . Improved protein structure prediction using potentials from deep learning. Nature. 2020; 577(7792):706-710. DOI: 10.1038/s41586-019-1923-7. View