» Articles » PMID: 33634094

Regulatory Mechanisms of Vitellogenesis in Insects

Overview
Specialty Cell Biology
Date 2021 Feb 26
PMID 33634094
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

Vitellogenesis is pre-requisite to insect egg production and embryonic development after oviposition. During insect vitellogenesis, the yolk protein precursor vitellogenin (Vg) is mainly synthesized in the fat body, transported by the hemolymph through the intercellular spaces (known as patency) in the follicular epithelium to reach the membrane of maturing oocytes, and sequestered into the maturing oocytes via receptor-mediated endocytosis. Insect vitellogenesis is governed by two critical hormones, the sesquiterpenoid juvenile hormone (JH) and the ecdysteriod 20-hydroxyecdysone (20E). JH acts as the principal gonadotropic hormone to stimulate vitellogenesis in basal hemimetabolous and most holometabolous insects. 20E is critical for vitellogenesis in some hymenopterans, lepidopterans and dipterans. Furthermore, microRNA (miRNA) and nutritional (amino acid/Target of Rapamycin and insulin) pathways interplay with JH and 20E signaling cascades to control insect vitellogenesis. Revealing the regulatory mechanisms underlying insect vitellogenesis is critical for understanding insect reproduction and helpful for developing new strategies of insect pest control. Here, we outline the recent research progress in the molecular action of gonadotropic JH and 20E along with the role of miRNA and nutritional sensor in regulating insect vitellogenesis. We highlight the advancements in the regulatory mechanisms of insect vitellogenesis by the coordination of hormone, miRNA and nutritional signaling pathways.

Citing Articles

Worker Survival and Egg Production-But Not Transcriptional Activity-Respond to Queen Number in the Highly Polygynous, Invasive Ant Tapinoma magnum.

Lenhart A, Majoe M, Selvi S, Colgan T, Libbrecht R, Foitzik S Mol Ecol. 2025; 34(6):e17679.

PMID: 39902496 PMC: 11874646. DOI: 10.1111/mec.17679.


Functional Analysis of Genes Encoding Juvenile Hormone Receptor and Transcription Factor in the Reproductive Capacity of Males.

Cheng Y, Zhou Y, Li C Insects. 2025; 16(1).

PMID: 39859630 PMC: 11765967. DOI: 10.3390/insects16010049.


The ecdysone-induced bZIP transcription factor MafB establishes a positive feedback loop to enhance vitellogenesis and reproduction in the mosquito.

Wang J, Zhong Z, He Y, Tian J, Wang Y, Raikhel A Proc Natl Acad Sci U S A. 2025; 122(2):e2411688122.

PMID: 39792288 PMC: 11745349. DOI: 10.1073/pnas.2411688122.


Transgenic tomato strategies targeting whitefly eggs from apoplastic or ovary-directed proteins.

Thompson N, Anwar A, Krum D, Ream M, Shouse E, Weston Z BMC Plant Biol. 2024; 24(1):1262.

PMID: 39731036 PMC: 11673810. DOI: 10.1186/s12870-024-05852-5.


Phosphoproteomics analyses of fat body reveals blood meal-induced signaling and metabolic pathways.

Lopez A, Debnath T, Pinch M, Hansen I Heliyon. 2024; 10(22):e40060.

PMID: 39634388 PMC: 11615488. DOI: 10.1016/j.heliyon.2024.e40060.


References
1.
Peng L, Wang L, Zou M, Vasseur L, Chu L, Qin Y . Identification of Halloween Genes and RNA Interference-Mediated Functional Characterization of a Halloween Gene in . Front Physiol. 2019; 10:1120. PMC: 6724230. DOI: 10.3389/fphys.2019.01120. View

2.
Suren-Castillo S, Abrisqueta M, Maestro J . FoxO inhibits juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem Mol Biol. 2012; 42(7):491-8. DOI: 10.1016/j.ibmb.2012.03.006. View

3.
Bryant B, Macdonald W, Raikhel A . microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A. 2010; 107(52):22391-8. PMC: 3012520. DOI: 10.1073/pnas.1016230107. View

4.
Wu Z, Guo W, Xie Y, Zhou S . Juvenile Hormone Activates the Transcription of Cell-division-cycle 6 (Cdc6) for Polyploidy-dependent Insect Vitellogenesis and Oogenesis. J Biol Chem. 2016; 291(10):5418-27. PMC: 4777871. DOI: 10.1074/jbc.M115.698936. View

5.
Lin X, Yao Y, Wang B . Methoprene-tolerant (Met) and Krüpple-homologue 1 (Kr-h1) are required for ovariole development and egg maturation in the brown plant hopper. Sci Rep. 2015; 5:18064. PMC: 4677288. DOI: 10.1038/srep18064. View