» Articles » PMID: 33623916

Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage

Overview
Specialty Biology
Date 2021 Feb 24
PMID 33623916
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Hydrogen energy, with environment amicable, renewable, efficiency, and cost-effective advantages, is the future mainstream substitution of fossil-based fuel. However, the extremely low volumetric density gives rise to the main challenge in hydrogen storage, and therefore, exploring effective storage techniques is key hurdles that need to be crossed to accomplish the sustainable hydrogen economy. Hydrogen physically or chemically stored into nanomaterials in the solid-state is a desirable prospect for effective large-scale hydrogen storage, which has exhibited great potentials for applications in both reversible onboard storage and regenerable off-board storage applications. Its attractive points include safe, compact, light, reversibility, and efficiently produce sufficient pure hydrogen fuel under the mild condition. This review comprehensively gathers the state-of-art solid-state hydrogen storage technologies using nanostructured materials, involving nanoporous carbon materials, metal-organic frameworks, covalent organic frameworks, porous aromatic frameworks, nanoporous organic polymers, and nanoscale hydrides. It describes significant advances achieved so far, and main barriers need to be surmounted to approach practical applications, as well as offers a perspective for sustainable energy research.

Citing Articles

Research progress in the preparation of sodium-ion battery anode materials using ball milling.

Zhang L, Huang S, Ding Y, Zeng T RSC Adv. 2025; 15(8):6324-6341.

PMID: 40008021 PMC: 11852758. DOI: 10.1039/d4ra08061k.


Functionalization of Nanomaterials for Energy Storage and Hydrogen Production Applications.

Salaheldeen M, M Abu-Dief A, El-Dabea T Materials (Basel). 2025; 18(4).

PMID: 40004296 PMC: 11857648. DOI: 10.3390/ma18040768.


Impact of the Metal-Organic Frameworks Polymorphism on the Electrocatalytic Properties of CeO toward Oxygen Evolution.

Mendes N, Souto Neto A, Hortencio J, Menezes de Oliveira A, Raimundo R, Macedo D ACS Omega. 2024; 9(50):49913-49924.

PMID: 39713635 PMC: 11656357. DOI: 10.1021/acsomega.4c08837.


Agile soft template array fabrication of one-dimensional (1D) polyaniline nanocomposite fibers for hydrogen storage.

Parveen A, Manjunatha S, Kumar M, Roy A RSC Adv. 2024; 14(35):25347-25358.

PMID: 39139231 PMC: 11321209. DOI: 10.1039/d4ra04710a.


Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage.

Xu Y, Li Y, Gao L, Liu Y, Ding Z Nanomaterials (Basel). 2024; 14(12).

PMID: 38921912 PMC: 11207059. DOI: 10.3390/nano14121036.


References
1.
Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B . Covalent organic frameworks for membrane separation. Chem Soc Rev. 2019; 48(10):2665-2681. DOI: 10.1039/c8cs00919h. View

2.
Li Z, Zhu G, Lu G, Qiu S, Yao X . Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J Am Chem Soc. 2010; 132(5):1490-1. DOI: 10.1021/ja9103217. View

3.
Wagemans R, van Lenthe J, de Jongh P, van Dillen A, de Jong K . Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc. 2005; 127(47):16675-80. DOI: 10.1021/ja054569h. View

4.
Germain J, Frechet J, Svec F . Nanoporous polymers for hydrogen storage. Small. 2009; 5(10):1098-111. DOI: 10.1002/smll.200801762. View

5.
Tanabe K, Cohen S . Postsynthetic modification of metal-organic frameworks--a progress report. Chem Soc Rev. 2010; 40(2):498-519. DOI: 10.1039/c0cs00031k. View