» Articles » PMID: 33623044

Stability of Synchronization in Simplicial Complexes

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Feb 24
PMID 33623044
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Various systems in physics, biology, social sciences and engineering have been successfully modeled as networks of coupled dynamical systems, where the links describe pairwise interactions. This is, however, too strong a limitation, as recent studies have revealed that higher-order many-body interactions are present in social groups, ecosystems and in the human brain, and they actually affect the emergent dynamics of all these systems. Here, we introduce a general framework to study coupled dynamical systems accounting for the precise microscopic structure of their interactions at any possible order. We show that complete synchronization exists as an invariant solution, and give the necessary condition for it to be observed as a stable state. Moreover, in some relevant instances, such a necessary condition takes the form of a Master Stability Function. This generalizes the existing results valid for pairwise interactions to the case of complex systems with the most general possible architecture.

Citing Articles

Study on the robust control of higher-order networks.

Ma F, Yu W, Ma X Sci Rep. 2025; 15(1):7033.

PMID: 40016506 PMC: 11868654. DOI: 10.1038/s41598-025-91842-y.


Spatiotemporal Complexity in the Psychotic Brain.

Li Q, Liu J, Pearlson G, Chen J, Wang Y, Turner J bioRxiv. 2025; .

PMID: 39868241 PMC: 11761638. DOI: 10.1101/2025.01.14.632764.


Hyperedge overlap drives explosive transitions in systems with higher-order interactions.

Malizia F, Lamata-Otin S, Frasca M, Latora V, Gomez-Gardenes J Nat Commun. 2025; 16(1):555.

PMID: 39788931 PMC: 11718204. DOI: 10.1038/s41467-024-55506-1.


Experimental datasets on synchronization in simplicial complexes.

Vera-Avila V, Rivera-Duron R, Orozco-Lopez O, Soriano-Garcia M, Sevilla-Escoboza J, Buldu J Data Brief. 2025; 57:111145.

PMID: 39760006 PMC: 11697596. DOI: 10.1016/j.dib.2024.111145.


Stability of synchronization manifolds and its nonlinear behaviour in memristive coupled discrete neuron model.

Joseph D, Kumarasamy S, Jose S, Rajagopal K Cogn Neurodyn. 2024; 18(6):4089-4099.

PMID: 39712124 PMC: 11655780. DOI: 10.1007/s11571-024-10165-2.


References
1.
Avalos-Gaytan V, Almendral J, Leyva I, Battiston F, Nicosia V, Latora V . Emergent explosive synchronization in adaptive complex networks. Phys Rev E. 2018; 97(4-1):042301. DOI: 10.1103/PhysRevE.97.042301. View

2.
Skardal P, Arenas A . Abrupt Desynchronization and Extensive Multistability in Globally Coupled Oscillator Simplexes. Phys Rev Lett. 2019; 122(24):248301. DOI: 10.1103/PhysRevLett.122.248301. View

3.
Sizemore A, Phillips-Cremins J, Ghrist R, Bassett D . The importance of the whole: Topological data analysis for the network neuroscientist. Netw Neurosci. 2019; 3(3):656-673. PMC: 6663305. DOI: 10.1162/netn_a_00073. View

4.
Petri G, Barrat A . Simplicial Activity Driven Model. Phys Rev Lett. 2018; 121(22):228301. DOI: 10.1103/PhysRevLett.121.228301. View

5.
Gutierrez R, Amann A, Assenza S, Gomez-Gardenes J, Latora V, Boccaletti S . Emerging meso- and macroscales from synchronization of adaptive networks. Phys Rev Lett. 2011; 107(23):234103. DOI: 10.1103/PhysRevLett.107.234103. View