» Articles » PMID: 33619264

The First Conus Genome Assembly Reveals a Primary Genetic Central Dogma of Conopeptides in C. Betulinus

Abstract

Although there are various Conus species with publicly available transcriptome and proteome data, no genome assembly has been reported yet. Here, using Chinese tubular cone snail (C. betulinus) as a representative, we sequenced and assembled the first Conus genome with original identification of 133 genome-widely distributed conopeptide genes. After integration of our genomics, transcriptomics, and peptidomics data in the same species, we established a primary genetic central dogma of diverse conopeptides, assuming a rough number ratio of ~1:1:1:10s for the total genes: transcripts: proteins: post-translationally modified peptides. This ratio may be special for this worm-hunting Conus species, due to the high diversity of various Conus genomes and the big number ranges of conopeptide genes, transcripts, and peptides in previous reports of diverse Conus species. Only a fraction (45.9%) of the identified conotopeptide genes from our achieved genome assembly are transcribed with transcriptomic evidence, and few genes individually correspond to multiple transcripts possibly due to intraspecies or mutation-based variances. Variable peptide processing at the proteomic level, generating a big diversity of venom conopeptides with alternative cleavage sites, post-translational modifications, and N-/C-terminal truncations, may explain how the 133 genes and ~123 transcripts can generate thousands of conopeptides in the venom of individual C. betulinus. We also predicted many conopeptides with high stereostructural similarities to the putative analgesic ω-MVIIA, addiction therapy AuIB and insecticide ImI, suggesting that our current genome assembly for C. betulinus is a valuable genetic resource for high-throughput prediction and development of potential pharmaceuticals.

Citing Articles

Integrative multi-omics analysis reveals the contribution of neoVTX genes to venom diversity of Synanceia verrucosa.

Zhang Z, Li Q, Li H, Wei S, Yu W, Peng Z BMC Genomics. 2024; 25(1):1210.

PMID: 39695923 PMC: 11657881. DOI: 10.1186/s12864-024-11149-6.


High-Throughput Prediction and Design of Novel Conopeptides for Biomedical Research and Development.

Gao B, Huang Y, Peng C, Lin B, Liao Y, Bian C Biodes Res. 2023; 2022:9895270.

PMID: 37850131 PMC: 10521759. DOI: 10.34133/2022/9895270.


Systematic dissection of genomic features determining the vast diversity of conotoxins.

Zheng J, Lu Y, Yang Y, Huang D, Li D, Wang X BMC Genomics. 2023; 24(1):598.

PMID: 37814244 PMC: 10561478. DOI: 10.1186/s12864-023-09689-4.


Chromosome-level genome of the venomous snail Kalloconus canariensis: a valuable model for venomics and comparative genomics.

Herraez-Perez A, Pardos-Blas J, Afonso C, Tenorio M, Zardoya R Gigascience. 2023; 12.

PMID: 37776364 PMC: 10541794. DOI: 10.1093/gigascience/giad075.


Chromosome-level genome assembly of the caenogastropod snail Rapana venosa.

Song H, Li Z, Yang M, Shi P, Yu Z, Hu Z Sci Data. 2023; 10(1):539.

PMID: 37587134 PMC: 10432487. DOI: 10.1038/s41597-023-02459-7.


References
1.
Webb B, Sali A . Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics. 2016; 54:5.6.1-5.6.37. PMC: 5031415. DOI: 10.1002/cpbi.3. View

2.
Boetzer M, Henkel C, Jansen H, Butler D, Pirovano W . Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2010; 27(4):578-9. DOI: 10.1093/bioinformatics/btq683. View

3.
Gao B, Peng C, Chen Q, Zhang J, Shi Q . Mitochondrial genome sequencing of a vermivorous cone snail Conus quercinus supports the correlative analysis between phylogenetic relationships and dietary types of Conus species. PLoS One. 2018; 13(7):e0193053. PMC: 6066214. DOI: 10.1371/journal.pone.0193053. View

4.
McGivern J . Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat. 2009; 3(1):69-85. PMC: 2654521. DOI: 10.2147/nedt.2007.3.1.69. View

5.
Barghi N, Concepcion G, Olivera B, Lluisma A . High conopeptide diversity in Conus tribblei revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms. Mar Biotechnol (NY). 2014; 17(1):81-98. PMC: 4501261. DOI: 10.1007/s10126-014-9595-7. View