» Articles » PMID: 33615071

Generation of Monogenic Candidate Genes for Human Nephrotic Syndrome Using 3 Independent Approaches

Abstract

Introduction: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of chronic kidney disease during childhood. Identification of 63 monogenic human genes has delineated 12 distinct pathogenic pathways.

Methods: Here, we generated 2 independent sets of nephrotic syndrome (NS) candidate genes to augment the discovery of additional monogenic causes based on whole-exome sequencing (WES) data from 1382 families with NS.

Results: We first identified 63 known monogenic causes of NS in mice from public databases and scientific publications, and 12 of these genes overlapped with the 63 known human monogenic SRNS genes. Second, we used a set of 64 genes that are regulated by the transcription factor Wilms tumor 1 (WT1), which causes SRNS if mutated. Thirteen of these WT1-regulated genes overlapped with human or murine NS genes. Finally, we overlapped these lists of murine and WT1 candidate genes with our list of 120 candidate genes generated from WES in 1382 NS families, to identify novel candidate genes for monogenic human SRNS. Using this approach, we identified 7 overlapping genes, of which 3 genes were shared by all datasets, including . We show that loss-of-function of leads to decreased CDC42 activity and reduced podocyte migration rate, both of which are rescued by overexpression of wild-type complementary DNA (cDNA), but not by cDNA representing the patient mutation.

Conclusion: Thus, we identified 3 novel candidate genes for human SRNS using 3 independent, nonoverlapping hypotheses, and generated functional evidence for as a novel potential monogenic cause of NS.

Citing Articles

Renal cell markers: lighthouses for managing renal diseases.

Agarwal S, Sudhini Y, Polat O, Reiser J, Altintas M Am J Physiol Renal Physiol. 2021; 321(6):F715-F739.

PMID: 34632812 PMC: 8714975. DOI: 10.1152/ajprenal.00182.2021.

References
1.
Lefebvre J, Clarkson M, Massa F, Bradford S, Charlet A, Buske F . Alternatively spliced isoforms of WT1 control podocyte-specific gene expression. Kidney Int. 2015; 88(2):321-31. DOI: 10.1038/ki.2015.140. View

2.
van der Ven A, Connaughton D, Ityel H, Mann N, Nakayama M, Chen J . Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol. 2018; 29(9):2348-2361. PMC: 6115658. DOI: 10.1681/ASN.2017121265. View

3.
Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P . Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/-KTS splice isoforms. Hum Mol Genet. 1998; 7(4):709-14. DOI: 10.1093/hmg/7.4.709. View

4.
Mundel P . [Synaptopodin: an actin-associated protein of telencephalic dendrites and of podocytes in the kidney glomerulus]. Ann Anat. 1998; 180(5):391-2. View

5.
Schneider R, Deutsch K, Hoeprich G, Marquez J, Hermle T, Braun D . DAAM2 Variants Cause Nephrotic Syndrome via Actin Dysregulation. Am J Hum Genet. 2020; 107(6):1113-1128. PMC: 7820625. DOI: 10.1016/j.ajhg.2020.11.008. View