» Articles » PMID: 33614821

Non-viral Genome-editing in Mouse Bona Fide Hematopoietic Stem Cells with CRISPR/Cas9

Overview
Publisher Cell Press
Date 2021 Feb 22
PMID 33614821
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

We conducted two lines of genome-editing experiments of mouse hematopoietic stem cells (HSCs) with the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9). First, to evaluate the genome-editing efficiency in mouse bona fide HSCs, we knocked out integrin alpha 2b () with Cas9 ribonucleoprotein (Cas9/RNP) and performed serial transplantation in mice. The knockout efficiency was estimated at approximately 15%. Second, giving an example of X-linked severe combined immunodeficiency (X-SCID) as a target genetic disease, we showed a proof-of-concept of universal gene correction, allowing rescue of most of X-SCID mutations, in a completely non-viral setting. We inserted partial cDNA of interleukin-2 receptor gamma chain () into intron 1 of via non-homologous end-joining (NHEJ) with Cas9/RNP and a homology-independent targeted integration (HITI)-based construct. Repaired HSCs reconstituted T lymphocytes and thymuses in SCID mice. Our results show that a non-viral genome-editing of HSCs with CRISPR/Cas9 will help cure genetic diseases.

Citing Articles

Base Editors-Mediated Gene Therapy in Hematopoietic Stem Cells for Hematologic Diseases.

Zhang C, Xu J, Wu Y, Xu C, Xu P Stem Cell Rev Rep. 2024; 20(6):1387-1405.

PMID: 38644403 PMC: 11319617. DOI: 10.1007/s12015-024-10715-5.


Design of Liposome Formulations for CRISPR/Cas9 Enzyme Immobilization: Evaluation of 5-Alpha-Reductase Enzyme Knockout for Androgenic Disorders.

Akbaba H, Erel-Akbaba G, Baspinar Y, Senturk S ACS Omega. 2023; 8(48):46101-46112.

PMID: 38075788 PMC: 10702188. DOI: 10.1021/acsomega.3c07138.


Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells.

Lotfi M, Morshedi Rad D, Mashhadi S, Ashouri A, Mojarrad M, Mozaffari-Jovin S Stem Cell Rev Rep. 2023; 19(8):2576-2596.

PMID: 37723364 PMC: 10661828. DOI: 10.1007/s12015-023-10585-3.


In vivo somatic cell base editing and prime editing.

Newby G, Liu D Mol Ther. 2021; 29(11):3107-3124.

PMID: 34509669 PMC: 8571176. DOI: 10.1016/j.ymthe.2021.09.002.

References
1.
Zeng J, Wu Y, Ren C, Bonanno J, Shen A, Shea D . Therapeutic base editing of human hematopoietic stem cells. Nat Med. 2020; 26(4):535-541. PMC: 7869435. DOI: 10.1038/s41591-020-0790-y. View

2.
Hacein-Bey-Abina S, Garrigue A, Wang G, Soulier J, Lim A, Morillon E . Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008; 118(9):3132-42. PMC: 2496963. DOI: 10.1172/JCI35700. View

3.
Poon M, Di Minno G, dOiron R, Zotz R . New Insights Into the Treatment of Glanzmann Thrombasthenia. Transfus Med Rev. 2016; 30(2):92-9. DOI: 10.1016/j.tmrv.2016.01.001. View

4.
Schiroli G, Conti A, Ferrari S, Della Volpe L, Jacob A, Albano L . Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell. 2019; 24(4):551-565.e8. PMC: 6458988. DOI: 10.1016/j.stem.2019.02.019. View

5.
Gundry M, Brunetti L, Lin A, Mayle A, Kitano A, Wagner D . Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Cell Rep. 2016; 17(5):1453-1461. PMC: 5087995. DOI: 10.1016/j.celrep.2016.09.092. View