» Articles » PMID: 33594587

Comparative Secretome Analysis Between Salinity-tolerant and Control Chlamydomonas Reinhardtii Strains

Overview
Journal Planta
Specialty Biology
Date 2021 Feb 17
PMID 33594587
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Secretome analysis of a salt-tolerant and control Chlamydomonas reinhardtii revealed 514 differentially expressed proteins. Membrane transport and trafficking, signal transduction and channel proteins were up-regulated in the ST secretome. Salinity is a major abiotic stress that limits crop production worldwide. Multiple adverse effects have been reported in many living organisms exposed to high-saline concentrations. Chlamydomonas reinhardtii is known for secreting proteins in response to many environmental stresses. A salinity-tolerant (ST) strain of Chlamydomonas has been developed, whose cells were able to grow at 300 mM NaCl. The current study analyzed the secretomes of ST grown in TAP medium supplemented with 300 mM NaCl and the laboratory strain CC-503 grown in TAP medium without NaCl supplement. In total, 514 secreted proteins were identified of which 203 were up-regulated and 110 were down-regulated. Bioinformatic analysis predicted 168 proteins to be secreted or in the conventional secretory pathway. Out of these, 70 were up-regulated, while 51 proteins were down-regulated. Proteins involved in membrane transport and trafficking, signal transduction and channel proteins were altered in their expression in the ST secretome, suggesting the response of saline stress acts toward not only the intracellular pool of proteins but also the extracellular proteins. This also suggested that the secreted proteins might have roles in the extracellular space. Signal peptide (SP) prediction revealed that almost 40% of the predicted secreted proteins contained a signal peptide; however, a high proportion of proteins lacked an SP, suggesting that these proteins might be secreted through an unconventional protein secretion pathway.

Citing Articles

Comparative RNA-Seq of Ten Accessions: Unravelling Criteria for Robust Strain Selection from a Bioproduction Point of View.

Toustou C, Boulogne I, Gonzalez A, Bardor M Mar Drugs. 2024; 22(8).

PMID: 39195469 PMC: 11355425. DOI: 10.3390/md22080353.


High-throughput identification of novel heat tolerance genes via genome-wide pooled mutant screens in the model green alga Chlamydomonas reinhardtii.

Mattoon E, McHargue W, Bailey C, Zhang N, Chen C, Eckhardt J Plant Cell Environ. 2022; 46(3):865-888.

PMID: 36479703 PMC: 9898210. DOI: 10.1111/pce.14507.

References
1.
Abere B, Wikan N, Ubol S, Auewarakul P, Paemanee A, Kittisenachai S . Proteomic analysis of chikungunya virus infected microgial cells. PLoS One. 2012; 7(4):e34800. PMC: 3326055. DOI: 10.1371/journal.pone.0034800. View

2.
Agrawal G, Jwa N, Lebrun M, Job D, Rakwal R . Plant secretome: unlocking secrets of the secreted proteins. Proteomics. 2009; 10(4):799-827. DOI: 10.1002/pmic.200900514. View

3.
Alexandersson E, Ali A, Resjo S, Andreasson E . Plant secretome proteomics. Front Plant Sci. 2013; 4:9. PMC: 3561728. DOI: 10.3389/fpls.2013.00009. View

4.
Allen M, Del Campo J, Kropat J, Merchant S . FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell. 2007; 6(10):1841-52. PMC: 2043389. DOI: 10.1128/EC.00205-07. View

5.
Al-Dossary A, Strehler E, Martin-DeLeon P . Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013; 8(11):e80181. PMC: 3828235. DOI: 10.1371/journal.pone.0080181. View