Barcia Duran J, Das D, Gildea M, Amadori L, Gourvest M, Kaur R
Nat Cardiovasc Res. 2024; 3(12):1482-1502.
PMID: 39613875
PMC: 11634783.
DOI: 10.1038/s44161-024-00563-4.
Schlegel M, Cyr Y, Newman A, Schreyer K, Barcia Duran J, Sharma M
Proc Natl Acad Sci U S A. 2024; 121(44):e2412690121.
PMID: 39436659
PMC: 11536151.
DOI: 10.1073/pnas.2412690121.
Artimovic P, Spakova I, Macejkova E, Pribulova T, Rabajdova M, Marekova M
Genes Immun. 2024; 25(4):277-296.
PMID: 38909168
PMC: 11327111.
DOI: 10.1038/s41435-024-00283-6.
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X
Signal Transduct Target Ther. 2024; 9(1):130.
PMID: 38816371
PMC: 11139930.
DOI: 10.1038/s41392-024-01840-1.
Rawal S, Randhawa V, Rizvi S, Sachan M, Wara A, Perez-Cremades D
Cardiovasc Res. 2024; 120(14):1693-1712.
PMID: 38703377
PMC: 11587565.
DOI: 10.1093/cvr/cvae102.
Lipid-laden foam cells in the pathology of atherosclerosis: shedding light on new therapeutic targets.
Galindo C, Khan S, Zhang X, Yeh Y, Liu Z, Razani B
Expert Opin Ther Targets. 2023; 27(12):1231-1245.
PMID: 38009300
PMC: 10843715.
DOI: 10.1080/14728222.2023.2288272.
The Link between miRNAs and PCKS9 in Atherosclerosis.
Macvanin M, Gluvic Z, Klisic A, Manojlovic M, Suri J, Rizzo M
Curr Med Chem. 2023; 31(42):6926-6956.
PMID: 37990898
DOI: 10.2174/0109298673262124231102042914.
The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis.
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q
Curr Med Chem. 2023; 31(35):5779-5804.
PMID: 37807413
DOI: 10.2174/0109298673253678230920054220.
Macrophage-to-endothelial cell crosstalk by the cholesterol metabolite 27HC promotes atherosclerosis in male mice.
Yu L, Xu L, Chu H, Peng J, Sacharidou A, Hsieh H
Nat Commun. 2023; 14(1):4101.
PMID: 37491347
PMC: 10368733.
DOI: 10.1038/s41467-023-39586-z.
The Functionality of Apigenin as a Novel Cardioprotective Nutraceutical with Emphasize on Regulating Cardiac Micro RNAs:.
Shahabi Raberi V, Esmati M, Bodagh H, Ghasemi R, Ghazal M, Matinpour A
Galen Med J. 2023; 11:e2535.
PMID: 37200687
PMC: 10188251.
DOI: 10.31661/gmj.v11i.2535.
Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target.
Reiss A, Ahmed S, Johnson M, Saeedullah U, Leon J
Metabolites. 2023; 13(4).
PMID: 37110138
PMC: 10142472.
DOI: 10.3390/metabo13040479.
The diverse roles of macrophages in metabolic inflammation and its resolution.
Ray A, Odum O, Wiseman D, Weinstock A
Front Cell Dev Biol. 2023; 11:1147434.
PMID: 36994095
PMC: 10041730.
DOI: 10.3389/fcell.2023.1147434.
Posing the rationale for synthetic lipoxin mimetics as an adjuvant treatment to gold standard atherosclerosis therapies.
Millar B, de Gaetano M
Front Pharmacol. 2023; 14:1125858.
PMID: 36865918
PMC: 9971729.
DOI: 10.3389/fphar.2023.1125858.
MicroRNAs in Macrophages: Regulators of Activation and Function.
Sprenkle N, Serezani C, Pua H
J Immunol. 2023; 210(4):359-368.
PMID: 36724439
PMC: 10316964.
DOI: 10.4049/jimmunol.2200467.
microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis.
Ahangari F, Price N, Malik S, Chioccioli M, Barnthaler T, Adams T
JCI Insight. 2023; 8(4).
PMID: 36626225
PMC: 9977502.
DOI: 10.1172/jci.insight.158100.
Targeting and delivery of microRNA-targeting antisense oligonucleotides in cardiovascular diseases.
Saenz-Pipaon G, Dichek D
Atherosclerosis. 2022; 374:44-54.
PMID: 36577600
PMC: 10277317.
DOI: 10.1016/j.atherosclerosis.2022.12.003.
Development of hydrogen sulfide donors for anti-atherosclerosis therapeutics research: Challenges and future priorities.
Yang Y, Deng N, Tian K, Liu L, Wang Z, Wei D
Front Cardiovasc Med. 2022; 9:909178.
PMID: 36035922
PMC: 9412017.
DOI: 10.3389/fcvm.2022.909178.
Inhibition of microRNA-33b specifically ameliorates abdominal aortic aneurysm formation via suppression of inflammatory pathways.
Yamasaki T, Horie T, Koyama S, Nakao T, Baba O, Kimura M
Sci Rep. 2022; 12(1):11984.
PMID: 35835906
PMC: 9283493.
DOI: 10.1038/s41598-022-16017-5.
Decoding microRNA drivers in atherosclerosis.
Vartak T, Kumaresan S, Brennan E
Biosci Rep. 2022; 42(7).
PMID: 35758143
PMC: 9289798.
DOI: 10.1042/BSR20212355.
Reducing Endogenous Labile Zn May Help to Reduce Smooth Muscle Cell Injury around Vascular Stents.
Zeng Z, Xie Y, Li L, Wang H, Tan J, Li X
Int J Mol Sci. 2022; 23(9).
PMID: 35563532
PMC: 9101291.
DOI: 10.3390/ijms23095139.