» Articles » PMID: 33589680

Interface Atom Mobility and Charge Transfer Effects on CuO and CuO Formation on CuPd(111) and CuPt(111)

Overview
Journal Sci Rep
Specialty Science
Date 2021 Feb 16
PMID 33589680
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

We bombarded [Formula: see text] and [Formula: see text] with a 2.3 eV hyperthermal oxygen molecular beam (HOMB) source, and characterized the corresponding (oxide) surfaces with synchrotron-radiation X-ray photoemission spectroscopy (SR-XPS). At [Formula: see text], CuO forms on both [Formula: see text] and [Formula: see text]. When we increase the surface temperature to [Formula: see text], [Formula: see text] also forms on [Formula: see text], but not on [Formula: see text]. For comparison, [Formula: see text] forms even at [Formula: see text] on Cu(111). On [Formula: see text], [Formula: see text] forms only after [Formula: see text], and no oxides can be found at [Formula: see text]. We ascribe this difference in Cu oxide formation to the mobility of the interfacial species (Cu/Pd/Pt) and charge transfer between the surface Cu oxides and subsurface species (Cu/Pd/Pt).

Citing Articles

The physical and optical investigations of the tannic acid functionalised Cu-based oxide nanostructures.

Che Lah N, Murthy P, Mohd Zubir M Sci Rep. 2022; 12(1):9909.

PMID: 35701519 PMC: 9198045. DOI: 10.1038/s41598-022-14281-z.

References
1.
Wu H, Mayeshiba T, Morgan D . High-throughput ab-initio dilute solute diffusion database. Sci Data. 2016; 3:160054. PMC: 4950524. DOI: 10.1038/sdata.2016.54. View

2.
Oka K, Tsuda Y, Makino T, Okada M, Hashinokuchi M, Yoshigoe A . The effects of alloying and segregation for the reactivity and diffusion of oxygen on Cu3Au(111). Phys Chem Chem Phys. 2014; 16(36):19702-11. DOI: 10.1039/c4cp02675f. View

3.
Kishi H, Padama A, Arevalo R, Moreno J, Kasai H, Taniguchi M . A theoretical study of the reactivity of Cu2O(111) surfaces: the case of NO dissociation. J Phys Condens Matter. 2012; 24(26):262001. DOI: 10.1088/0953-8984/24/26/262001. View

4.
Wong T, Zhuk S, Masudy-Panah S, Dalapati G . Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells. Materials (Basel). 2017; 9(4). PMC: 5502964. DOI: 10.3390/ma9040271. View

5.
Yu X, Zhang X . High coverage water adsorption on CuO(011) surface. Phys Chem Chem Phys. 2017; 19(28):18652-18659. DOI: 10.1039/c7cp03003g. View