» Articles » PMID: 33587142

Rethinking Neglected Tropical Disease Prevalence Survey Design and Analysis: a Geospatial Paradigm

Overview
Date 2021 Feb 15
PMID 33587142
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Current methods for the design and analysis of neglected tropical disease prevalence surveys largely rely on classical survey sampling ideas that treat prevalence data from different locations as an independent random sample from the probability distribution induced by a random sampling design. We set out an alternative, explicitly geospatial paradigm that can deliver much more precise estimates of the geospatial variation in prevalence over a country or region of interest. We describe the advantages of this approach under three headings: streamlining, whereby more precise results can be obtained with smaller sample sizes; integrating, whereby a joint analysis of data from two or more diseases can bring further gains in precision; and adapting, whereby the choice of future sampling location is informed by past data.

Citing Articles

Alternative approaches for monitoring and evaluation of lymphatic filariasis following mass drug treatment with ivermectin, diethylcarbamazine and albendazole in East New Britain Province, Papua New Guinea.

Bun K, Mode B, Susapu M, Salo J, Bjerum C, Payne M PLoS Negl Trop Dis. 2025; 19(1):e0012128.

PMID: 39869653 PMC: 11798438. DOI: 10.1371/journal.pntd.0012128.


Using ESPEN data for evidence-based control of neglected tropical diseases in sub-Saharan Africa: A comprehensive model-based geostatistical analysis of soil-transmitted helminths.

Khaki J, Minnery M, Giorgi E PLoS Negl Trop Dis. 2025; 19(1):e0012782.

PMID: 39787255 PMC: 11753640. DOI: 10.1371/journal.pntd.0012782.


Understanding the impact of covariates on the classification of implementation units for soil-transmitted helminths control: a case study from Kenya.

Puranik A, Diggle P, Odiere M, Gass K, Kepha S, Okoyo C BMC Med Res Methodol. 2024; 24(1):294.

PMID: 39614175 PMC: 11606136. DOI: 10.1186/s12874-024-02420-1.


Adapting vector surveillance using Bayesian experimental design: An application to an ongoing tick monitoring program in the southeastern United States.

Case B, Dye-Braumuller K, Evans C, Li H, Rustin L, Nolan M Ticks Tick Borne Dis. 2024; 15(3):102329.

PMID: 38484538 PMC: 10993663. DOI: 10.1016/j.ttbdis.2024.102329.


Identifying childhood malaria hotspots and risk factors in a Nigerian city using geostatistical modelling approach.

Bayode T, Siegmund A Sci Rep. 2024; 14(1):5445.

PMID: 38443428 PMC: 10914794. DOI: 10.1038/s41598-024-55003-x.


References
1.
Takougang I, Meremikwu M, Wandji S, Yenshu E, Aripko B, Lamlenn S . Rapid assessment method for prevalence and intensity of Loa loa infection. Bull World Health Organ. 2002; 80(11):852-8. PMC: 2567678. View

2.
Kabaghe A, Chipeta M, McCann R, Phiri K, van Vugt M, Takken W . Adaptive geostatistical sampling enables efficient identification of malaria hotspots in repeated cross-sectional surveys in rural Malawi. PLoS One. 2017; 12(2):e0172266. PMC: 5308819. DOI: 10.1371/journal.pone.0172266. View

3.
Amoah B, Diggle P, Giorgi E . A geostatistical framework for combining spatially referenced disease prevalence data from multiple diagnostics. Biometrics. 2019; 76(1):158-170. DOI: 10.1111/biom.13142. View

4.
Fronterre C, Amoah B, Giorgi E, Stanton M, Diggle P . Design and Analysis of Elimination Surveys for Neglected Tropical Diseases. J Infect Dis. 2020; 221(Suppl 5):S554-S560. PMC: 7289555. DOI: 10.1093/infdis/jiz554. View