» Articles » PMID: 33587127

Sexual Dimorphism Through the Lens of Genome Manipulation, Forward Genetics, and Spatiotemporal Sequencing

Overview
Date 2021 Feb 15
PMID 33587127
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Sexual reproduction often leads to selection that favors the evolution of sex-limited traits or sex-specific variation for shared traits. These sexual dimorphisms manifest due to sex-specific genetic architectures and sex-biased gene expression across development, yet the molecular mechanisms underlying these patterns are largely unknown. The first step is to understand how sexual dimorphisms arise across the genotype-phenotype-fitness map. The emergence of "4D genome technologies" allows for efficient, high-throughput, and cost-effective manipulation and observations of this process. Studies of sexual dimorphism will benefit from combining these technological advances (e.g., precision genome editing, inducible transgenic systems, and single-cell RNA sequencing) with clever experiments inspired by classic designs (e.g., bulked segregant analysis, experimental evolution, and pedigree tracing). This perspective poses a synthetic view of how manipulative approaches coupled with cutting-edge observational methods and evolutionary theory are poised to uncover the molecular genetic basis of sexual dimorphism with unprecedented resolution. We outline hypothesis-driven experimental paradigms for identifying genetic mechanisms of sexual dimorphism among tissues, across development, and over evolutionary time.

Citing Articles

Precise Lineage Tracking Using Molecular Barcodes Demonstrates Fitness Trade-offs for Ivermectin Resistance in Nematodes.

Stevenson Z, Laufer E, Estevez A, Robinson K, Phillips P bioRxiv. 2024; .

PMID: 39574588 PMC: 11581038. DOI: 10.1101/2024.11.08.622685.


Sexual Dimorphism in Sex Hormone Metabolism in Human Skeletal Muscle Cells in Response to Different Testosterone Exposure.

Sgro P, Antinozzi C, Wasson C, Del Galdo F, Dimauro I, Di Luigi L Biology (Basel). 2024; 13(10).

PMID: 39452105 PMC: 11504033. DOI: 10.3390/biology13100796.


Dominance reversals: the resolution of genetic conflict and maintenance of genetic variation.

Grieshop K, Ho E, Kasimatis K Proc Biol Sci. 2024; 291(2018):20232816.

PMID: 38471544 PMC: 10932723. DOI: 10.1098/rspb.2023.2816.


Evaluating Prophylactic Effect of Bovine Colostrum on Intestinal Barrier Function in Zonulin Transgenic Mice: A Transcriptomic Study.

Asbjornsdottir B, Sigurdsson S, Miranda-Ribera A, Fiorentino M, Konno T, Lan J Int J Mol Sci. 2023; 24(19).

PMID: 37834178 PMC: 10572565. DOI: 10.3390/ijms241914730.


High-throughput library transgenesis in via Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS).

Stevenson Z, Moerdyk-Schauwecker M, Banse S, Patel D, Lu H, Phillips P Elife. 2023; 12.

PMID: 37401921 PMC: 10328503. DOI: 10.7554/eLife.84831.


References
1.
Barrett R, Hoekstra H . Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet. 2011; 12(11):767-80. DOI: 10.1038/nrg3015. View

2.
Hartmann B, Castelo R, Minana B, Peden E, Blanchette M, Rio D . Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA. 2011; 17(3):453-68. PMC: 3039145. DOI: 10.1261/rna.2460411. View

3.
Tukiainen T, Villani A, Yen A, Rivas M, Marshall J, Satija R . Landscape of X chromosome inactivation across human tissues. Nature. 2017; 550(7675):244-248. PMC: 5685192. DOI: 10.1038/nature24265. View

4.
Pickar-Oliver A, Gersbach C . The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019; 20(8):490-507. PMC: 7079207. DOI: 10.1038/s41580-019-0131-5. View

5.
Wang H, Liu J, Gharib S, Chai C, Schwarz E, Pokala N . cGAL, a temperature-robust GAL4-UAS system for Caenorhabditis elegans. Nat Methods. 2016; 14(2):145-148. PMC: 5693259. DOI: 10.1038/nmeth.4109. View