» Articles » PMID: 33584612

: A Kernel Framework for Integrating Supervised and Unsupervised Analyses in Spatio-Temporal Metagenomic Datasets

Overview
Journal Front Microbiol
Specialty Microbiology
Date 2021 Feb 15
PMID 33584612
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The advent of next-generation sequencing technologies allowed relative quantification of microbiome communities and their spatial and temporal variation. In recent years, supervised learning (i.e., prediction of a phenotype of interest) from taxonomic abundances has become increasingly common in the microbiome field. However, a gap exists between supervised and classical unsupervised analyses, based on computing ecological dissimilarities for visualization or clustering. Despite this, both approaches face common challenges, like the compositional nature of next-generation sequencing data or the integration of the spatial and temporal dimensions. Here we propose a kernel framework to place on a common ground the unsupervised and supervised microbiome analyses, including the retrieval of microbial signatures (taxa importances). We define two compositional kernels (Aitchison-RBF and compositional linear) and discuss how to transform non-compositional beta-dissimilarity measures into kernels. Spatial data is integrated with multiple kernel learning, while longitudinal data is evaluated by specific kernels. We illustrate our framework through a single point soil dataset, a human dataset with a spatial component, and a previously unpublished longitudinal dataset concerning pig production. The proposed framework and the case studies are freely available in the package at https://github.com/elies-ramon/kernInt.

Citing Articles

A toolbox of machine learning software to support microbiome analysis.

Marcos-Zambrano L, Lopez-Molina V, Bakir-Gungor B, Frohme M, Karaduzovic-Hadziabdic K, Klammsteiner T Front Microbiol. 2023; 14:1250806.

PMID: 38075858 PMC: 10704913. DOI: 10.3389/fmicb.2023.1250806.


Supervised learning and model analysis with compositional data.

Huang S, Ailer E, Kilbertus N, Pfister N PLoS Comput Biol. 2023; 19(6):e1011240.

PMID: 37390111 PMC: 10343141. DOI: 10.1371/journal.pcbi.1011240.


Copy Number Variation on Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs.

Ramayo-Caldas Y, Crespo-Piazuelo D, Morata J, Gonzalez-Rodriguez O, Sebastia C, Castello A Microbiol Spectr. 2023; 11(4):e0527122.

PMID: 37255458 PMC: 10433821. DOI: 10.1128/spectrum.05271-22.


Leveraging host-genetics and gut microbiota to determine immunocompetence in pigs.

Ramayo-Caldas Y, Zingaretti L, Perez-Pascual D, Alexandre P, Reverter A, Dalmau A Anim Microbiome. 2021; 3(1):74.

PMID: 34689834 PMC: 8543910. DOI: 10.1186/s42523-021-00138-9.

References
1.
Charlson E, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R . Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One. 2010; 5(12):e15216. PMC: 3004851. DOI: 10.1371/journal.pone.0015216. View

2.
Dahal R, Kim J . Microvirga soli sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol. 2016; 67(1):127-132. DOI: 10.1099/ijsem.0.001582. View

3.
Mariette J, Villa-Vialaneix N . Unsupervised multiple kernel learning for heterogeneous data integration. Bioinformatics. 2017; 34(6):1009-1015. DOI: 10.1093/bioinformatics/btx682. View

4.
Mach N, Berri M, Estelle J, Levenez F, Lemonnier G, Denis C . Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep. 2015; 7(3):554-69. DOI: 10.1111/1758-2229.12285. View

5.
Stewart C, Ajami N, OBrien J, Hutchinson D, Smith D, Wong M . Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018; 562(7728):583-588. PMC: 6415775. DOI: 10.1038/s41586-018-0617-x. View