» Articles » PMID: 33571097

Toward the Optimal Design and FPGA Implementation of Spiking Neural Networks

Overview
Date 2021 Feb 11
PMID 33571097
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The performance of a biologically plausible spiking neural network (SNN) largely depends on the model parameters and neural dynamics. This article proposes a parameter optimization scheme for improving the performance of a biologically plausible SNN and a parallel on-field-programmable gate array (FPGA) online learning neuromorphic platform for the digital implementation based on two numerical methods, namely, the Euler and third-order Runge-Kutta (RK3) methods. The optimization scheme explores the impact of biological time constants on information transmission in the SNN and improves the convergence rate of the SNN on digit recognition with a suitable choice of the time constants. The parallel digital implementation leads to a significant speedup over software simulation on a general-purpose CPU. The parallel implementation with the Euler method enables around 180× ( 20× ) training (inference) speedup over a Pytorch-based SNN simulation on CPU. Moreover, compared with previous work, our parallel implementation shows more than 300× ( 240× ) improvement on speed and 180× ( 250× ) reduction in energy consumption for training (inference). In addition, due to the high-order accuracy, the RK3 method is demonstrated to gain 2× training speedup over the Euler method, which makes it suitable for online training in real-time applications.

Citing Articles

Complex-Exponential-Based Bio-Inspired Neuron Model Implementation in FPGA Using Xilinx System Generator and Vivado Design Suite.

Ahmad M, Zhang L, Ng K, Chowdhury M Biomimetics (Basel). 2023; 8(8).

PMID: 38132560 PMC: 10741806. DOI: 10.3390/biomimetics8080621.


From Brain Models to Robotic Embodied Cognition: How Does Biological Plausibility Inform Neuromorphic Systems?.

Pham M, DAngiulli A, Dehnavi M, Chhabra R Brain Sci. 2023; 13(9).

PMID: 37759917 PMC: 10526461. DOI: 10.3390/brainsci13091316.


Efficient training of spiking neural networks with temporally-truncated local backpropagation through time.

Guo W, Fouda M, Eltawil A, Salama K Front Neurosci. 2023; 17:1047008.

PMID: 37090791 PMC: 10117667. DOI: 10.3389/fnins.2023.1047008.


Molecular Toxicity Virtual Screening Applying a Quantized Computational SNN-Based Framework.

Nascimben M, Rimondini L Molecules. 2023; 28(3).

PMID: 36771009 PMC: 9919191. DOI: 10.3390/molecules28031342.


Digital Implementation of Oscillatory Neural Network for Image Recognition Applications.

Abernot M, Gil T, Jimenez M, Nunez J, Avellido M, Linares-Barranco B Front Neurosci. 2021; 15:713054.

PMID: 34512246 PMC: 8427800. DOI: 10.3389/fnins.2021.713054.