» Articles » PMID: 33559947

Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development

Overview
Specialty Chemistry
Date 2021 Feb 9
PMID 33559947
Citations 70
Authors
Affiliations
Soon will be listed here.
Abstract

Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor-intensive to develop aptamer-based sensors for small-molecule detection. Here, we review the challenges and advances in the isolation and characterization of small-molecule-binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer-target binding and structure. Afterwards, we discuss various small-molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer-based small-molecule sensors for real-world applications.

Citing Articles

Emerging Trends in DNA Nanotechnology-Enabled Cell Surface Engineering.

Xiao F, Shen X, Tang W, Yang D JACS Au. 2025; 5(2):550-570.

PMID: 40017777 PMC: 11863167. DOI: 10.1021/jacsau.4c01274.


Tandem metabolic reaction-based sensors unlock in vivo metabolomics.

Cheng X, Li Z, Zhu J, Wang J, Huang R, Yu L Proc Natl Acad Sci U S A. 2025; 122(9):e2425526122.

PMID: 40014569 PMC: 11892595. DOI: 10.1073/pnas.2425526122.


Research Progress in Small-Molecule Detection Using Aptamer-Based SERS Techniques.

Zheng L, Ye Q, Wang M, Sun F, Chen Q, Yu X Biosensors (Basel). 2025; 15(1).

PMID: 39852080 PMC: 11764255. DOI: 10.3390/bios15010029.


Exploring the diffusion of DNA strands into nanoporous structures for establishing a universal electrochemical biosensor.

Zhao C, Gao R, Niu Y, Cai B, Zhu Y Chem Sci. 2025; 16(5):2420-2428.

PMID: 39790983 PMC: 11707798. DOI: 10.1039/d4sc05833j.


Examining the Relationship between Aptamer Complexity and Molecular Discrimination of a Low-Epitope Target.

Wang L, Canoura J, Byrd C, Nguyen T, Alkhamis O, Ly P ACS Cent Sci. 2024; 10(12):2213-2228.

PMID: 39735321 PMC: 11672540. DOI: 10.1021/acscentsci.4c01377.


References
1.
Zuo X, Xiao Y, Plaxco K . High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc. 2009; 131(20):6944-5. PMC: 2994717. DOI: 10.1021/ja901315w. View

2.
Ellefsen K, Anizan S, Castaneto M, Desrosiers N, Martin T, Klette K . Validation of the only commercially available immunoassay for synthetic cathinones in urine: Randox Drugs of Abuse V Biochip Array Technology. Drug Test Anal. 2014; 6(7-8):728-38. PMC: 4107059. DOI: 10.1002/dta.1633. View

3.
Frellsen J, Moltke I, Thiim M, Mardia K, Ferkinghoff-Borg J, Hamelryck T . A probabilistic model of RNA conformational space. PLoS Comput Biol. 2009; 5(6):e1000406. PMC: 2691987. DOI: 10.1371/journal.pcbi.1000406. View

4.
Oguro A, Yanagida A, Fujieda Y, Amano R, Otsu M, Sakamoto T . Two stems with different characteristics and an internal loop in an RNA aptamer contribute to spermine-binding. J Biochem. 2017; 161(2):197-206. DOI: 10.1093/jb/mvw062. View

5.
Lu C, Li J, Lin M, Wang Y, Yang H, Chen X . Amplified aptamer-based assay through catalytic recycling of the analyte. Angew Chem Int Ed Engl. 2010; 49(45):8454-7. DOI: 10.1002/anie.201002822. View