» Articles » PMID: 33553865

ChipSeg: An Automatic Tool to Segment Bacterial and Mammalian Cells Cultured in Microfluidic Devices

Abstract

Extracting quantitative measurements from time-lapse images is necessary in external feedback control applications, where segmentation results are used to inform control algorithms. We describe ChipSeg, a computational tool that segments bacterial and mammalian cells cultured in microfluidic devices and imaged by time-lapse microscopy, which can be used also in the context of external feedback control. The method is based on thresholding and uses the same core functions for both cell types. It allows us to segment individual cells in high cell density microfluidic devices, to quantify fluorescent protein expression over a time-lapse experiment, and to track individual mammalian cells. ChipSeg enables robust segmentation in external feedback control experiments and can be easily customized for other experimental settings and research aims.

Citing Articles

Single-cell pathogen diagnostics for combating antibiotic resistance.

Li H, Hsieh K, Wong P, Mach K, Liao J, Wang T Nat Rev Methods Primers. 2025; 3.

PMID: 39917628 PMC: 11800871. DOI: 10.1038/s43586-022-00190-y.


A review of open-source image analysis tools for mammalian cell culture: algorithms, features and implementations.

Malik H, Idris A, Toha S, Mohd Idris I, Daud M, Azmi N PeerJ Comput Sci. 2023; 9:e1364.

PMID: 37346656 PMC: 10280419. DOI: 10.7717/peerj-cs.1364.


microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation.

Scherr T, Seiffarth J, Wollenhaupt B, Neumann O, Schilling M, Kohlheyer D PLoS One. 2022; 17(11):e0277601.

PMID: 36445903 PMC: 9707790. DOI: 10.1371/journal.pone.0277601.


Control-Based Continuation: A New Approach to Prototype Synthetic Gene Networks.

de Cesare I, Salzano D, di Bernardo M, Renson L, Marucci L ACS Synth Biol. 2022; 11(7):2300-2313.

PMID: 35729740 PMC: 9295158. DOI: 10.1021/acssynbio.1c00632.


Investigation of Different Free Image Analysis Software for High-Throughput Droplet Detection.

Sanka I, Bartkova S, Pata P, Smolander O, Scheler O ACS Omega. 2021; 6(35):22625-22634.

PMID: 34514234 PMC: 8427638. DOI: 10.1021/acsomega.1c02664.

References
1.
Kaiser M, Jug F, Julou T, Deshpande S, Pfohl T, Silander O . Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nat Commun. 2018; 9(1):212. PMC: 5768764. DOI: 10.1038/s41467-017-02505-0. View

2.
Uhlendorf J, Miermont A, Delaveau T, Charvin G, Fages F, Bottani S . Long-term model predictive control of gene expression at the population and single-cell levels. Proc Natl Acad Sci U S A. 2012; 109(35):14271-6. PMC: 3435223. DOI: 10.1073/pnas.1206810109. View

3.
Mondragon-Palomino O, Danino T, Selimkhanov J, Tsimring L, Hasty J . Entrainment of a population of synthetic genetic oscillators. Science. 2011; 333(6047):1315-1319. PMC: 4841678. DOI: 10.1126/science.1205369. View

4.
Bajcsy P, Cardone A, Chalfoun J, Halter M, Juba D, Kociolek M . Survey statistics of automated segmentations applied to optical imaging of mammalian cells. BMC Bioinformatics. 2015; 16:330. PMC: 4608288. DOI: 10.1186/s12859-015-0762-2. View

5.
Eliceiri K, Berthold M, Goldberg I, Ibanez L, Manjunath B, Martone M . Biological imaging software tools. Nat Methods. 2012; 9(7):697-710. PMC: 3659807. DOI: 10.1038/nmeth.2084. View