» Articles » PMID: 33547343

Multimodal Deep Learning Models for Early Detection of Alzheimer's Disease Stage

Overview
Journal Sci Rep
Specialty Science
Date 2021 Feb 6
PMID 33547343
Citations 105
Authors
Affiliations
Soon will be listed here.
Abstract

Most current Alzheimer's disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer's disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.

Citing Articles

A comprehensive interpretable machine learning framework for mild cognitive impairment and Alzheimer's disease diagnosis.

Vlontzou M, Athanasiou M, Dalakleidi K, Skampardoni I, Davatzikos C, Nikita K Sci Rep. 2025; 15(1):8410.

PMID: 40069342 PMC: 11897299. DOI: 10.1038/s41598-025-92577-6.


A review of AI-based radiogenomics in neurodegenerative disease.

Liu H, Zhang X, Liu Q Front Big Data. 2025; 8:1515341.

PMID: 40052173 PMC: 11882605. DOI: 10.3389/fdata.2025.1515341.


Multimodal Digital Phenotyping of Behavior in a Neurology Clinic: Development of the Neurobooth Platform and the First Two Years of Data Collection.

Nunes A, Patel S, Oubre B, Jas M, Kulkarni D, Luddy A medRxiv. 2025; .

PMID: 39974013 PMC: 11838688. DOI: 10.1101/2024.12.28.24319527.


Predicting dementia in Parkinson's disease on a small tabular dataset using hybrid LightGBM-TabPFN and SHAP.

Tran V, Byeon H Digit Health. 2025; 10:20552076241272585.

PMID: 39968191 PMC: 11833816. DOI: 10.1177/20552076241272585.


Connectome-based prediction of future episodic memory performance for individual amnestic mild cognitive impairment patients.

Zhang Z, Wang M, Lu T, Shi Y, Xie C, Ren Q Brain Commun. 2025; 7(1):fcaf033.

PMID: 39963290 PMC: 11831076. DOI: 10.1093/braincomms/fcaf033.


References
1.
Suk H, Lee S, Shen D . Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage. 2014; 101:569-82. PMC: 4165842. DOI: 10.1016/j.neuroimage.2014.06.077. View

2.
Suk H, Shen D . Deep learning-based feature representation for AD/MCI classification. Med Image Comput Comput Assist Interv. 2014; 16(Pt 2):583-90. PMC: 4029347. DOI: 10.1007/978-3-642-40763-5_72. View

3.
. 2013 Alzheimer's disease facts and figures. Alzheimers Dement. 2013; 9(2):208-45. DOI: 10.1016/j.jalz.2013.02.003. View

4.
Perrin R, Fagan A, Holtzman D . Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature. 2009; 461(7266):916-22. PMC: 2810658. DOI: 10.1038/nature08538. View

5.
Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R . Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Trans Biomed Eng. 2014; 62(4):1132-40. PMC: 4394860. DOI: 10.1109/TBME.2014.2372011. View