» Articles » PMID: 33547320

Replacing Conventional Battery Electrolyte Additives with Dioxolone Derivatives for High-energy-density Lithium-ion Batteries

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Feb 6
PMID 33547320
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Solid electrolyte interphases generated using electrolyte additives are key for anode-electrolyte interactions and for enhancing the lithium-ion battery lifespan. Classical solid electrolyte interphase additives, such as vinylene carbonate and fluoroethylene carbonate, have limited potential for simultaneously achieving a long lifespan and fast chargeability in high-energy-density lithium-ion batteries (LIBs). Here we report a next-generation synthetic additive approach that allows to form a highly stable electrode-electrolyte interface architecture from fluorinated and silylated electrolyte additives; it endures the lithiation-induced volume expansion of Si-embedded anodes and provides ion channels for facile Li-ion transport while protecting the Ni-rich LiNiCoMnO cathodes. The retrosynthetically designed solid electrolyte interphase-forming additives, 5-methyl-4-((trifluoromethoxy)methyl)-1,3-dioxol-2-one and 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one, provide spatial flexibility to the vinylene carbonate-derived solid electrolyte interphase via polymeric propagation with the vinyl group of vinylene carbonate. The interface architecture from the synthesized vinylene carbonate-type additive enables high-energy-density LIBs with 81.5% capacity retention after 400 cycles at 1 C and fast charging capability (1.9% capacity fading after 100 cycles at 3 C).

Citing Articles

Decarbonising road freight transport: The role of zero-emission trucks and intangible costs.

Aryanpur V, Rogan F Sci Rep. 2024; 14(1):2113.

PMID: 38267587 PMC: 10810084. DOI: 10.1038/s41598-024-52682-4.


Metal-Organic Framework Glass as a Functional Filler Enables Enhanced Performance of Solid-State Polymer Electrolytes for Lithium Metal Batteries.

Ding J, Du T, Thomsen E, Andresen D, Fischer M, Moller A Adv Sci (Weinh). 2023; 11(10):e2306698.

PMID: 38145970 PMC: 10933666. DOI: 10.1002/advs.202306698.


Electrolyte Engineering Toward High Performance High Nickel (Ni ≥ 80%) Lithium-Ion Batteries.

Dong T, Zhang S, Ren Z, Huang L, Xu G, Liu T Adv Sci (Weinh). 2023; 11(7):e2305753.

PMID: 38044323 PMC: 10870087. DOI: 10.1002/advs.202305753.


Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode.

Tian Y, Tan S, Yang C, Zhao Y, Xu D, Lu Z Nat Commun. 2023; 14(1):7247.

PMID: 37945604 PMC: 10636032. DOI: 10.1038/s41467-023-43093-6.


Tailored PVDF Graft Copolymers via ATRP as High-Performance NCM811 Cathode Binders.

Liu T, Parekh R, Mocny P, Bloom B, Zhao Y, An S ACS Mater Lett. 2023; 5(10):2594-2603.

PMID: 37800127 PMC: 10548467. DOI: 10.1021/acsmaterialslett.3c00485.


References
1.
Choi N, Chen Z, Freunberger S, Ji X, Sun Y, Amine K . Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed Engl. 2012; 51(40):9994-10024. DOI: 10.1002/anie.201201429. View

2.
Wang Y, Nakamura S, Tasaki K, Balbuena P . Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?. J Am Chem Soc. 2002; 124(16):4408-21. DOI: 10.1021/ja017073i. View

3.
Feng P, Lee K, Lee J, Zhan C, Ngai M . Access to a new class of synthetic building blocks trifluoromethoxylation of pyridines and pyrimidines. Chem Sci. 2016; 7(1):424-429. PMC: 5110255. DOI: 10.1039/C5SC02983J. View

4.
Liu J, Chen C, Chu L, Chen Z, Xu X, Qing F . Silver-Mediated Oxidative Trifluoromethylation of Phenols: Direct Synthesis of Aryl Trifluoromethyl Ethers. Angew Chem Int Ed Engl. 2015; 54(40):11839-42. DOI: 10.1002/anie.201506329. View

5.
Etacheri V, Haik O, Goffer Y, Roberts G, Stefan I, Fasching R . Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir. 2011; 28(1):965-76. DOI: 10.1021/la203712s. View