» Articles » PMID: 33544727

Sialotranscriptomics of the Argasid Tick Ornithodoros Moubata Along the Trophogonic Cycle

Overview
Date 2021 Feb 5
PMID 33544727
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The argasid tick Ornithodoros moubata is the main vector of human relapsing fever (HRF) and African swine fever (ASF) in Africa. Salivary proteins are part of the host-tick interface and play vital roles in the tick feeding process and the host infection by tick-borne pathogens; they represent interesting targets for immune interventions aimed at tick control. The present work describes the transcriptome profile of salivary glands of O. moubata and assesses the gene expression dynamics along the trophogonic cycle using Illumina sequencing. De novo transcriptome assembling resulted in 71,194 transcript clusters and 41,011 annotated transcripts, which represent 57.6% of the annotation success. Most salivary gene expression takes place during the first 7 days after feeding (6,287 upregulated transcripts), while a minority of genes (203 upregulated transcripts) are differentially expressed between 7 and 14 days after feeding. The functional protein groups more abundantly overrepresented after blood feeding were lipocalins, proteases (especially metalloproteases), protease inhibitors including the Kunitz/BPTI-family, proteins with phospholipase A2 activity, acid tail proteins, basic tail proteins, vitellogenins, the 7DB family and proteins involved in tick immunity and defence. The complexity and functional redundancy observed in the sialotranscriptome of O. moubata are comparable to those of the sialomes of other argasid and ixodid ticks. This transcriptome provides a valuable reference database for ongoing proteomics studies of the salivary glands and saliva of O. moubata aimed at confirming and expanding previous data on the O. moubata sialoproteome.

Citing Articles

Exploring the transcriptome of immature stages of Ornithodoros hermsi, the soft-tick vector of tick-borne relapsing fever.

de Sousa-Paula L, Berger M, Talyuli O, Schwartz C, Saturday G, Ribeiro J Sci Rep. 2024; 14(1):12466.

PMID: 38816418 PMC: 11140000. DOI: 10.1038/s41598-024-62732-6.


Characterisation of putative novel tick viruses and zoonotic risk prediction.

Lin Y, Pascall D Ecol Evol. 2024; 14(1):e10814.

PMID: 38259958 PMC: 10800298. DOI: 10.1002/ece3.10814.


Client Applications and Server-Side Docker for Management of RNASeq and/or VariantSeq Workflows and Pipelines of the GPRO Suite.

Hafez A, Soriano B, Elsayed A, Futami R, Ceprian R, Ramos-Ruiz R Genes (Basel). 2023; 14(2).

PMID: 36833195 PMC: 9957322. DOI: 10.3390/genes14020267.


A simple non-invasive method to collect soft tick saliva reveals differences in saliva composition between ticks infected and uninfected with spirochetes.

Filatov S, Dycka F, Sterba J, Rego R Front Cell Infect Microbiol. 2023; 13:1112952.

PMID: 36743301 PMC: 9895398. DOI: 10.3389/fcimb.2023.1112952.


Tick Salivary Kunitz-Type Inhibitors: Targeting Host Hemostasis and Immunity to Mediate Successful Blood Feeding.

Jmel M, Voet H, Araujo R, Tirloni L, Sa-Nunes A, Kotsyfakis M Int J Mol Sci. 2023; 24(2).

PMID: 36675071 PMC: 9865953. DOI: 10.3390/ijms24021556.


References
1.
Masoud H, Helmy M, Darwish D, Abdel-Monsef M, Ibrahim M . Apyrase with anti-platelet aggregation activity from the nymph of the camel tick Hyalomma dromedarii. Exp Appl Acarol. 2020; 80(3):349-361. DOI: 10.1007/s10493-020-00471-9. View

2.
Macours N, Poels J, Hens K, Francis C, Huybrechts R . Structure, evolutionary conservation, and functions of angiotensin- and endothelin-converting enzymes. Int Rev Cytol. 2004; 239:47-97. PMC: 7126198. DOI: 10.1016/S0074-7696(04)39002-9. View

3.
Charrier N, Couton M, Voordouw M, Rais O, Durand-Hermouet A, Hervet C . Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasit Vectors. 2018; 11(1):364. PMC: 6019515. DOI: 10.1186/s13071-018-2932-3. View

4.
Arias M, Jurado C, Gallardo C, Fernandez-Pinero J, Sanchez-Vizcaino J . Gaps in African swine fever: Analysis and priorities. Transbound Emerg Dis. 2017; 65 Suppl 1:235-247. DOI: 10.1111/tbed.12695. View

5.
Dinger M, Pang K, Mercer T, Mattick J . Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol. 2008; 4(11):e1000176. PMC: 2518207. DOI: 10.1371/journal.pcbi.1000176. View