» Articles » PMID: 33538838

Contribution of PET Imaging to Radiotherapy Planning and Monitoring in Glioma Patients - a Report of the PET/RANO Group

Abstract

The management of patients with glioma usually requires multimodality treatment including surgery, radiotherapy, and systemic therapy. Accurate neuroimaging plays a central role for radiotherapy planning and follow-up after radiotherapy completion. In order to maximize the radiation dose to the tumor and to minimize toxic effects on the surrounding brain parenchyma, reliable identification of tumor extent and target volume delineation is crucial. The use of positron emission tomography (PET) for radiotherapy planning and monitoring in gliomas has gained considerable interest over the last several years, but Class I data are not yet available. Furthermore, PET has been used after radiotherapy for response assessment and to distinguish tumor progression from pseudoprogression or radiation necrosis. Here, the Response Assessment in Neuro-Oncology (RANO) working group provides a summary of the literature and recommendations for the use of PET imaging for radiotherapy of patients with glioma based on published studies, constituting levels 1-3 evidence according to the Oxford Centre for Evidence-based Medicine.

Citing Articles

Comparison of F-FET-PET- and MRI-based target definition for re-irradiation treatment of recurrent diffuse glioma.

Everard A, Versnel D, Ruijters V, Tolboom N, Philippens M, Snijders T Clin Transl Radiat Oncol. 2025; 52:100931.

PMID: 40041678 PMC: 11879608. DOI: 10.1016/j.ctro.2025.100931.


Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment.

Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida T Int J Mol Sci. 2025; 26(3).

PMID: 39940686 PMC: 11817476. DOI: 10.3390/ijms26030917.


Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma.

Duraj T, Kalamian M, Zuccoli G, Maroon J, DAgostino D, Scheck A BMC Med. 2024; 22(1):578.

PMID: 39639257 PMC: 11622503. DOI: 10.1186/s12916-024-03775-4.


Histomolecular Validation of [F]-FACBC in Gliomas Using Image-Localized Biopsies.

Vindstad B, Skjulsvik A, Pedersen L, Berntsen E, Solheim O, Ingebrigtsen T Cancers (Basel). 2024; 16(14).

PMID: 39061219 PMC: 11275162. DOI: 10.3390/cancers16142581.


Biomarker-driven molecular imaging probes in radiotherapy.

Li H, Gong Q, Luo K Theranostics. 2024; 14(10):4127-4146.

PMID: 38994026 PMC: 11234278. DOI: 10.7150/thno.97768.


References
1.
Lohmann P, Stavrinou P, Lipke K, Bauer E, Ceccon G, Werner J . FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging. 2018; 46(3):591-602. DOI: 10.1007/s00259-018-4188-8. View

2.
Grosu A, Weber W, Franz M, Stark S, Piert M, Thamm R . Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2005; 63(2):511-9. DOI: 10.1016/j.ijrobp.2005.01.056. View

3.
Wen P, Weller M, Quant Lee E, Alexander B, Barnholtz-Sloan J, Barthel F . Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020; 22(8):1073-1113. PMC: 7594557. DOI: 10.1093/neuonc/noaa106. View

4.
Douglas J, Stelzer K, Mankoff D, Tralins K, Krohn K, Muzi M . [F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys. 2005; 64(3):886-91. DOI: 10.1016/j.ijrobp.2005.08.013. View

5.
Unterrainer M, Eze C, Ilhan H, Marschner S, Roengvoraphoj O, Schmidt-Hegemann N . Recent advances of PET imaging in clinical radiation oncology. Radiat Oncol. 2020; 15(1):88. PMC: 7171749. DOI: 10.1186/s13014-020-01519-1. View