» Articles » PMID: 33526885

Microbial Production and Consumption of Hydrocarbons in the Global Ocean

Overview
Journal Nat Microbiol
Date 2021 Feb 2
PMID 33526885
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratification and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean's microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage.

Citing Articles

Arctic's hidden hydrocarbon degradation microbes: investigating the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on microbial communities and hydrocarbon biodegradation pathways in high-Arctic beaches.

Chen Y, Altshuler I, Freyria N, Lirette A, Gongora E, Greer C Environ Microbiome. 2024; 19(1):81.

PMID: 39478600 PMC: 11526595. DOI: 10.1186/s40793-024-00626-w.


Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge.

Zhao Y, Sun Y, Sun H, Zuo F, Kuang S, Zhang S Toxics. 2024; 12(9).

PMID: 39330576 PMC: 11436144. DOI: 10.3390/toxics12090648.


Metagenomic survey reveals hydrocarbon biodegradation potential of Canadian high Arctic beaches.

Gongora E, Lirette A, Freyria N, Greer C, Whyte L Environ Microbiome. 2024; 19(1):72.

PMID: 39294752 PMC: 11411865. DOI: 10.1186/s40793-024-00616-y.


High Arctic seawater and coastal soil microbiome co-occurrence and composition structure and their potential hydrocarbon biodegradation.

Freyria N, Gongora E, Greer C, Whyte L ISME Commun. 2024; 4(1):ycae100.

PMID: 39101031 PMC: 11296632. DOI: 10.1093/ismeco/ycae100.


Enhanced nutrient supply promotes mutualistic interactions between cyanobacteria and bacteria in oligotrophic ocean.

Liu W, Zhao F, Li X, Zheng S, Li L, Zhao R Proc Biol Sci. 2024; 291(2027):20240788.

PMID: 39043236 PMC: 11265871. DOI: 10.1098/rspb.2024.0788.


References
1.
Han J, McCarthy E, Hoeven W, Calvin M, Bradley W . Organic geochemical studies, ii. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proc Natl Acad Sci U S A. 1968; 59(1):29-33. PMC: 285995. DOI: 10.1073/pnas.59.1.29. View

2.
Schirmer A, Rude M, Li X, Popova E, del Cardayre S . Microbial biosynthesis of alkanes. Science. 2010; 329(5991):559-62. DOI: 10.1126/science.1187936. View

3.
Lea-Smith D, Biller S, Davey M, Cotton C, Perez Sepulveda B, Turchyn A . Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci U S A. 2015; 112(44):13591-6. PMC: 4640736. DOI: 10.1073/pnas.1507274112. View

4.
Field , Behrenfeld , Randerson , Falkowski . Primary production of the biosphere: integrating terrestrial and oceanic components . Science. 1998; 281(5374):237-40. DOI: 10.1126/science.281.5374.237. View

5.
Flombaum P, Gallegos J, Gordillo R, Rincon J, Zabala L, Jiao N . Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A. 2013; 110(24):9824-9. PMC: 3683724. DOI: 10.1073/pnas.1307701110. View