» Articles » PMID: 33520378

OCT-OCTA Segmentation: Combining Structural and Blood Flow Information to Segment Bruch's Membrane

Overview
Specialty Radiology
Date 2021 Feb 1
PMID 33520378
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper we present a fully automated graph-based segmentation algorithm that jointly uses optical coherence tomography (OCT) and OCT angiography (OCTA) data to segment Bruch's membrane (BM). This is especially valuable in cases where the spatial correlation between BM, which is usually not visible on OCT scans, and the retinal pigment epithelium (RPE), which is often used as a surrogate for segmenting BM, is distorted by pathology. We validated the performance of our proposed algorithm against manual segmentation in a total of 18 eyes from healthy controls and patients with diabetic retinopathy (DR), non-exudative age-related macular degeneration (AMD) (early/intermediate AMD, nascent geographic atrophy (nGA) and drusen-associated geographic atrophy (DAGA) and geographic atrophy (GA)), and choroidal neovascularization (CNV) with a mean absolute error of ∼0.91 pixel (∼4.1 μm). This paper suggests that OCT-OCTA segmentation may be a useful framework to complement the growing usage of OCTA in ophthalmic research and clinical communities.

Citing Articles

Robust AMD Stage Grading with Exclusively OCTA Modality Leveraging 3D Volume.

Zhang H, Heinke A, Galang C, Deussen D, Wen B, Bartsch D IEEE Int Conf Comput Vis Workshops. 2024; 2023:2403-2412.

PMID: 39176054 PMC: 11340655. DOI: 10.1109/ICCVW60793.2023.00255.


Spectral-Domain and Swept-Source OCT Angiographic Scans Yield Similar Drusen Measurements When Processed with the Same Algorithm.

Hiya F, Liu J, Shen M, Herrera G, Li J, Zhang Q Ophthalmol Sci. 2024; 4(3):100424.

PMID: 38284102 PMC: 10818246. DOI: 10.1016/j.xops.2023.100424.


Deep-learning-based automated measurement of outer retinal layer thickness for use in the assessment of age-related macular degeneration, applicable to both swept-source and spectral-domain OCT imaging.

Lu J, Cheng Y, Hiya F, Shen M, Herrera G, Zhang Q Biomed Opt Express. 2024; 15(1):413-427.

PMID: 38223170 PMC: 10783897. DOI: 10.1364/BOE.512359.


ARTIFICIAL INTELLIGENCE FOR OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY-BASED DISEASE ACTIVITY PREDICTION IN AGE-RELATED MACULAR DEGENERATION.

Heinke A, Zhang H, Deussen D, Galang C, Warter A, Kalaw F Retina. 2023; 44(3):465-474.

PMID: 37988102 PMC: 10922109. DOI: 10.1097/IAE.0000000000003977.


OCT angiography and its retinal biomarkers [Invited].

Hormel T, Jia Y Biomed Opt Express. 2023; 14(9):4542-4566.

PMID: 37791289 PMC: 10545210. DOI: 10.1364/BOE.495627.


References
1.
Baumann B, Gotzinger E, Pircher M, Sattmann H, Schuutze C, Schlanitz F . Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J Biomed Opt. 2011; 15(6):061704. PMC: 3036956. DOI: 10.1117/1.3499420. View

2.
Chiu S, Izatt J, OConnell R, Winter K, Toth C, Farsiu S . Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci. 2011; 53(1):53-61. DOI: 10.1167/iovs.11-7640. View

3.
Borrelli E, Shi Y, Uji A, Balasubramanian S, Nassisi M, Sarraf D . Topographic Analysis of the Choriocapillaris in Intermediate Age-related Macular Degeneration. Am J Ophthalmol. 2018; 196:34-43. DOI: 10.1016/j.ajo.2018.08.014. View

4.
Curcio C . Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci. 2018; 59(4):AMD160-AMD181. PMC: 6733535. DOI: 10.1167/iovs.18-24882. View

5.
Choi W, Mohler K, Potsaid B, Lu C, Liu J, Jayaraman V . Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One. 2013; 8(12):e81499. PMC: 3859478. DOI: 10.1371/journal.pone.0081499. View