» Articles » PMID: 33519386

Extrinsic Factors Regulating Dendritic Patterning

Overview
Specialty Cell Biology
Date 2021 Feb 1
PMID 33519386
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Stereotypic dendrite arborizations are key morphological features of neuronal identity, as the size, shape and location of dendritic trees determine the synaptic input fields and how information is integrated within developed neural circuits. In this review, we focus on the actions of extrinsic intercellular communication factors and their effects on intrinsic developmental processes that lead to dendrite patterning. Surrounding neurons or supporting cells express adhesion receptors and secreted proteins that respectively, act direct contact or over short distances to shape, size, and localize dendrites during specific developmental stages. The different ligand-receptor interactions and downstream signaling events appear to direct dendrite morphogenesis by converging on two categorical mechanisms: local cytoskeletal and adhesion modulation and global transcriptional regulation of key dendritic growth components, such as lipid synthesis enzymes. Recent work has begun to uncover how the coordinated signaling of multiple extrinsic factors promotes complexity in dendritic trees and ensures robust dendritic patterning.

Citing Articles

Reelin differentially shapes dendrite morphology of medial entorhinal cortical ocean and island cells.

Hamad M, Daoud S, Petrova P, Rabaya O, Jbara A, Al Houqani S Development. 2024; 151(13).

PMID: 38856043 PMC: 11234379. DOI: 10.1242/dev.202449.


Extracellular molecular signals shaping dendrite architecture during brain development.

Hamad M, Emerald B, Kumar K, Ibrahim M, Ali B, Bataineh M Front Cell Dev Biol. 2023; 11:1254589.

PMID: 38155836 PMC: 10754048. DOI: 10.3389/fcell.2023.1254589.


Topology recapitulates morphogenesis of neuronal dendrites.

Liao M, Bird A, Cuntz H, Howard J Cell Rep. 2023; 42(11):113268.

PMID: 38007691 PMC: 10756852. DOI: 10.1016/j.celrep.2023.113268.


Contraction of axonal and dendritic fields in -deficient cone bipolar cells is accompanied by axonal sprouting and dendritic hyper-innervation of pedicles.

Kulesh B, Reese B, Keeley P Front Neuroanat. 2022; 16:944706.

PMID: 36093292 PMC: 9459848. DOI: 10.3389/fnana.2022.944706.


Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them.

Kilo L, Sturner T, Tavosanis G, Ziegler A Cells. 2021; 10(10).

PMID: 34685757 PMC: 8534399. DOI: 10.3390/cells10102777.

References
1.
Matsuoka R, Nguyen-Ba-Charvet K, Parray A, Badea T, Chedotal A, Kolodkin A . Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature. 2011; 470(7333):259-63. PMC: 3063100. DOI: 10.1038/nature09675. View

2.
Hing H, Reger N, Snyder J, Fradkin L . Interplay between axonal Wnt5-Vang and dendritic Wnt5-Drl/Ryk signaling controls glomerular patterning in the Drosophila antennal lobe. PLoS Genet. 2020; 16(5):e1008767. PMC: 7219789. DOI: 10.1371/journal.pgen.1008767. View

3.
Lanoue V, Langford M, White A, Sempert K, Fogg L, Cooper H . The Wnt receptor Ryk is a negative regulator of mammalian dendrite morphogenesis. Sci Rep. 2017; 7(1):5965. PMC: 5519545. DOI: 10.1038/s41598-017-06140-z. View

4.
Ozel M, Simon F, Jafari S, Holguera I, Chen Y, Benhra N . Neuronal diversity and convergence in a visual system developmental atlas. Nature. 2020; 589(7840):88-95. PMC: 7790857. DOI: 10.1038/s41586-020-2879-3. View

5.
Wu Y, Helt J, Wexler E, Petrova I, Noordermeer J, Fradkin L . Wnt5 and drl/ryk gradients pattern the Drosophila olfactory dendritic map. J Neurosci. 2014; 34(45):14961-72. PMC: 4220028. DOI: 10.1523/JNEUROSCI.2676-14.2014. View