» Articles » PMID: 33518087

The Role of Histidine Dipeptides on Postmortem Acidification of Broiler Muscles with Different Energy Metabolism

Overview
Journal Poult Sci
Publisher Elsevier
Date 2021 Feb 1
PMID 33518087
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

It is generally held that the content of several free amino acids and dipeptides is closely related to the energy-supplying metabolism of skeletal muscles. Metabolic characteristics of muscles are involved in the variability of meat quality due to their ability to influence the patterns of energy metabolism not only in living animal but also during postmortem time. Within this context, this study aimed at establishing whether the concentration of histidine dipeptides can affect muscle postmortem metabolism, examining the glycolytic pathway of 3 chicken muscles (pectoralis major, extensor iliotibialis lateralis, and gastrocnemius internus as glycolytic, intermediate, and oxidative-type, respectively) selected based on their histidine dipeptides content and ultimate pH. Thus, a total of 8 carcasses were obtained from the same flock of broiler chickens (Ross 308 strain, females, 49 d of age, 2.8 kg body weight at slaughter) and selected immediately after evisceration from the line of a commercial processing plant. Meat samples of about 1 cm were excised from bone-in muscles at 15, 60, 120, and 1,440 min postmortem, instantly frozen in liquid nitrogen and used for the determination of pH, glycolytic metabolites, buffering capacity as well as histidine dipeptides content through H-NMR. Overall results suggest that glycolysis in leg muscles ceased already after 2 h postmortem, whereas in breast muscle continued until 24 h, when it exhibited significantly lower pH values (P < 0.05). However, considering its remarkable glycolytic potential, pectoralis major muscle should have exhibited a greater and faster acidification, suggesting that its higher (P < 0.05) histidine dipeptides' content might have prevented a potentially stronger acidification process. Accordingly, breast muscle also showed greater (P < 0.05) buffering ability in the pH range 6.0-7.0. Therefore, anserine and carnosine, being highly positively correlated with muscle's buffering capacity (P < 0.001), might play a role in regulating postmortem pH decline, thus exerting an effect on muscle metabolism during prerigor phase and the quality of the forthcoming meat. Overall results also suggest that total histidine dipeptides content along with muscular ultimate pH represent good indicators for the energy-supplying metabolism of chicken muscles.

Citing Articles

Broiler Spaghetti Meat Abnormalities: Muscle Characteristics and Metabolomic Profiles.

Wu T, Liu P, Wu J, Jiang Y, Zhou N, Zhang Y Animals (Basel). 2024; 14(8).

PMID: 38672384 PMC: 11047362. DOI: 10.3390/ani14081236.


Effect of muscle fibre types and carnosine levels on the expression of carnosine-related genes in pig skeletal muscle.

Kalbe C, Metzger K, Gariepy C, Palin M Histochem Cell Biol. 2023; 160(1):63-77.

PMID: 37171629 PMC: 10313551. DOI: 10.1007/s00418-023-02193-6.


Study of the Metabolite Changes in under Pineapple Leaf Residue Stress via LC-MS/MS Coupled with a Non-Targeted Metabolomics Approach.

Liu Y, Qian Y, Wang C, He Y, Zhu C, Chen G Metabolites. 2023; 13(4).

PMID: 37110146 PMC: 10144527. DOI: 10.3390/metabo13040487.


Anserine/Carnosine-Rich Extract from Thai Native Chicken Suppresses Melanogenesis via Activation of ERK Signaling Pathway.

Teeravirote K, Sutthanut K, Thonsri U, Mahalapbutr P, Seubwai W, Luang S Molecules. 2022; 27(21).

PMID: 36364267 PMC: 9659164. DOI: 10.3390/molecules27217440.


Comparison of chicken breast quality characteristics and metabolites due to different rearing environments and refrigerated storage.

Yeon Jung D, Lee D, Lee H, Kim H, Jung J, Jang A Poult Sci. 2022; 101(7):101953.

PMID: 35679668 PMC: 9189219. DOI: 10.1016/j.psj.2022.101953.


References
1.
Tinbergen B, Slump P . The detection of chicken meat in meat products by means of the anserine/carnosine ratio. Z Lebensm Unters Forsch. 1976; 161(1):7-11. DOI: 10.1007/BF01145413. View

2.
Baldi G, Yen C, Daughtry M, Bodmer J, Bowker B, Zhuang H . Exploring the Factors Contributing to the High Ultimate pH of Broiler Pectoralis Major Muscles Affected by Wooden Breast Condition. Front Physiol. 2020; 11:343. PMC: 7227419. DOI: 10.3389/fphys.2020.00343. View

3.
Rao M, Gault N . The influence of fibre-type composition and associated biochemical characteristics on the acid buffering capacities of several beef muscles. Meat Sci. 2011; 26(1):5-18. DOI: 10.1016/0309-1740(89)90053-3. View

4.
Poso A, Puolanne E . Carbohydrate metabolism in meat animals. Meat Sci. 2011; 70(3):423-34. DOI: 10.1016/j.meatsci.2004.12.017. View

5.
Shen L, Luo J, Lei H, Jiang Y, Bai L, Li M . Effects of muscle fiber type on glycolytic potential and meat quality traits in different Tibetan pig muscles and their association with glycolysis-related gene expression. Genet Mol Res. 2015; 14(4):14366-78. DOI: 10.4238/2015.November.13.22. View