» Articles » PMID: 33513304

Shaping Perovskites: Crystallization Mechanism of Rapid Thermally Annealed, Prepatterned Perovskite Films

Overview
Date 2021 Jan 29
PMID 33513304
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding and controlling the crystallization of organic-inorganic perovskite materials is important for their function in optoelectronic applications. This control is particularly delicate in scalable single-step thermal annealing methods. In this work, the crystallization mechanisms of flash infrared-annealed perovskite films, grown on substrates with lithographically patterned Au nucleation seeds, are investigated. The patterning enables the observation to study the crystallization kinetics and the precise control of the perovskite nucleation and domain growth, while retaining the characteristic polycrystalline micromorphology with larger crystallites at the boundaries of the crystal domains, as shown by electron backscattering diffraction. Time-resolved photoluminescence measurements reveal longer charge carrier lifetimes in regions with large crystallites on the domain boundaries, relative to the domain interior. By increasing the nucleation site density, the proportion of larger crystallites is increased. This study shows that the combination of rapid thermal annealing with nucleation control is a promising approach to improve perovskite crystallinity and thereby ultimately the performance of optoelectronic devices.

Citing Articles

Vapor-Assisted Method to Deposit Compact (CHNH)BiI Thin Films for Bismuth-Based Planar Perovskite Solar Cells.

Gao Z, Wang X, Sun Z, Song P, Feng X, Jin Z Micromachines (Basel). 2025; 16(2).

PMID: 40047659 PMC: 11857830. DOI: 10.3390/mi16020218.


Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes.

Lee G, Kim K, Kim Y, Yang J, Choi M Nanomicro Lett. 2023; 16(1):45.

PMID: 38060071 PMC: 10704014. DOI: 10.1007/s40820-023-01254-8.


Nanocrystalline Flash Annealed Nickel Oxide for Large Area Perovskite Solar Cells.

Ochoa-Martinez E, Bijani-Chiquero S, Martinez de Yuso M, Sarkar S, Diaz-Perez H, Mejia-Castellanos R Adv Sci (Weinh). 2023; 10(23):e2302549.

PMID: 37259683 PMC: 10427371. DOI: 10.1002/advs.202302549.

References
1.
Hu Q, Zhao L, Wu J, Gao K, Luo D, Jiang Y . In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI] cage nanoparticles. Nat Commun. 2017; 8:15688. PMC: 5482054. DOI: 10.1038/ncomms15688. View

2.
Roose B, Dey K, Chiang Y, Friend R, Stranks S . Critical Assessment of the Use of Excess Lead Iodide in Lead Halide Perovskite Solar Cells. J Phys Chem Lett. 2020; 11(16):6505-6512. DOI: 10.1021/acs.jpclett.0c01820. View

3.
Zhang W, Saliba M, Moore D, Pathak S, Horantner M, Stergiopoulos T . Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat Commun. 2015; 6:6142. DOI: 10.1038/ncomms7142. View

4.
Jeon N, Noh J, Yang W, Kim Y, Ryu S, Seo J . Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015; 517(7535):476-80. DOI: 10.1038/nature14133. View

5.
Saliba M, Matsui T, Seo J, Domanski K, Correa-Baena J, Nazeeruddin M . Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. 2016; 9(6):1989-1997. PMC: 4936376. DOI: 10.1039/c5ee03874j. View