» Articles » PMID: 33510153

Fast Operando Spectroscopy Tracking in Situ Generation of Rich Defects in Silver Nanocrystals for Highly Selective Electrochemical CO Reduction

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Jan 29
PMID 33510153
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Electrochemical CO reduction (ECR) is highly attractive to curb global warming. The knowledge on the evolution of catalysts and identification of active sites during the reaction is important, but still limited. Here, we report an efficient catalyst (Ag-D) with suitable defect concentration operando formed during ECR within several minutes. Utilizing the powerful fast operando X-ray absorption spectroscopy, the evolving electronic and crystal structures are unraveled under ECR condition. The catalyst exhibits a ~100% faradaic efficiency and negligible performance degradation over a 120-hour test at a moderate overpotential of 0.7 V in an H-cell reactor and a current density of ~180 mA cm at -1.0 V vs. reversible hydrogen electrode in a flow-cell reactor. Density functional theory calculations indicate that the adsorption of intermediate COOH could be enhanced and the free energy of the reaction pathways could be optimized by an appropriate defect concentration, rationalizing the experimental observation.

Citing Articles

The AUREX cell: a versatile electrochemical cell for studying catalytic materials using X-ray diffraction, total scattering and X-ray absorption spectroscopy under working conditions.

Frank S, Ceccato M, Jeppesen H, Marks M, Nielsen M, Lu R J Appl Crystallogr. 2024; 57(Pt 5):1489-1502.

PMID: 39387078 PMC: 11460379. DOI: 10.1107/S1600576724007817.


Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO reduction: Strategy and challenge.

Cho J, Ma J, Kim S Exploration (Beijing). 2023; 3(5):20230001.

PMID: 37933280 PMC: 10582615. DOI: 10.1002/EXP.20230001.


Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H-production.

Fan Z, Liao F, Ji Y, Liu Y, Huang H, Wang D Nat Commun. 2022; 13(1):5828.

PMID: 36192414 PMC: 9530234. DOI: 10.1038/s41467-022-33512-5.


Anode Catalysts in CO Electrolysis: Challenges and Untapped Opportunities.

Vass A, Kormanyos A, Koszo Z, Endrodi B, Janaky C ACS Catal. 2022; 12(2):1037-1051.

PMID: 35096466 PMC: 8787754. DOI: 10.1021/acscatal.1c04978.


Silver nanomaterials: synthesis and (electro/photo) catalytic applications.

Sharma R, Yadav S, Dutta S, Kale H, Warkad I, Zboril R Chem Soc Rev. 2021; 50(20):11293-11380.

PMID: 34661205 PMC: 8942099. DOI: 10.1039/d0cs00912a.

References
1.
Kuhl K, Hatsukade T, Cave E, Abram D, Kibsgaard J, Jaramillo T . Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc. 2014; 136(40):14107-13. DOI: 10.1021/ja505791r. View

2.
Guan D, Zhou J, Huang Y, Dong C, Wang J, Zhou W . Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nat Commun. 2019; 10(1):3755. PMC: 6704169. DOI: 10.1038/s41467-019-11847-w. View

3.
Singh M, Kwon Y, Lum Y, Ager 3rd J, Bell A . Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO over Ag and Cu. J Am Chem Soc. 2016; 138(39):13006-13012. DOI: 10.1021/jacs.6b07612. View

4.
Lee J, Kattel S, Jiang Z, Xie Z, Yao S, Tackett B . Tuning the activity and selectivity of electroreduction of CO to synthesis gas using bimetallic catalysts. Nat Commun. 2019; 10(1):3724. PMC: 6700200. DOI: 10.1038/s41467-019-11352-0. View

5.
Ma M, Trzesniewski B, Xie J, Smith W . Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts. Angew Chem Int Ed Engl. 2016; 55(33):9748-52. DOI: 10.1002/anie.201604654. View