» Articles » PMID: 33507352

Combined Negative Dielectrophoresis with a Flexible SERS Platform As a Novel Strategy for Rapid Detection and Identification of Bacteria

Overview
Specialty Chemistry
Date 2021 Jan 28
PMID 33507352
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Surface-enhanced Raman spectroscopy (SERS) is a vibrational method successfully applied in analytical chemistry, molecular biology and medical diagnostics. In this article, we demonstrate the combination of the negative dielectrophoretic (nDEP) phenomenon and a flexible surface-enhanced Raman platform for quick isolation (3 min), concentration and label-free identification of bacteria. The platform ensures a strong enhancement factor, high stability and reproducibility for the SERS response of analyzed samples. By introducing radial dielectrophoretic forces directed at the SERS platform, we can efficiently execute bacterial cell separation, concentration and deposition onto the SERS-active surface, which simultaneously works as a counter electrode and thus enables such hybrid DEP-SERS device vibration-based detection. Additionally, we show the ability of our DEP-SERS system to perform rapid, cultivation-free, direct detection of bacteria in urine and apple juice samples. The device provides new opportunities for the detection of pathogens.

Citing Articles

Unraveling RNA contribution to the molecular origins of bacterial surface-enhanced Raman spectroscopy (SERS) signals.

Chien J, Gu Y, Chien C, Chang C, Cheng H, Chiu S Sci Rep. 2024; 14(1):19505.

PMID: 39174714 PMC: 11341899. DOI: 10.1038/s41598-024-70274-0.


Raman and Surface-Enhanced Raman Scattering Detection in Flowing Solutions for Complex Mixture Analysis.

Poonia M, Morder C, Schorr H, Schultz Z Annu Rev Anal Chem (Palo Alto Calif). 2024; 17(1):411-432.

PMID: 38382105 PMC: 11254575. DOI: 10.1146/annurev-anchem-061522-035207.


High-Frequency Dielectrophoresis Reveals That Distinct Bio-Electric Signatures of Colorectal Cancer Cells Depend on Ploidy and Nuclear Volume.

Duncan J, Bloomfield M, Swami N, Cimini D, Davalos R Micromachines (Basel). 2023; 14(9).

PMID: 37763886 PMC: 10535145. DOI: 10.3390/mi14091723.


Rapid Prediction of Multidrug-Resistant Klebsiella pneumoniae through Deep Learning Analysis of SERS Spectra.

Lyu J, Zhang X, Tang J, Zhao Y, Liu S, Zhao Y Microbiol Spectr. 2023; :e0412622.

PMID: 36877048 PMC: 10100812. DOI: 10.1128/spectrum.04126-22.


Machine learning analysis of SERS fingerprinting for the rapid determination of infection and drug resistance.

Wang L, Zhang X, Tang J, Ma Z, Usman M, Liu Q Comput Struct Biotechnol J. 2022; 20:5364-5377.

PMID: 36212533 PMC: 9526180. DOI: 10.1016/j.csbj.2022.09.031.


References
1.
Cordero E, Latka I, Matthaus C, Schie I, Popp J . In-vivo Raman spectroscopy: from basics to applications. J Biomed Opt. 2018; 23(7):1-23. DOI: 10.1117/1.JBO.23.7.071210. View

2.
Ember K, Hoeve M, McAughtrie S, Bergholt M, Dwyer B, Stevens M . Raman spectroscopy and regenerative medicine: a review. NPJ Regen Med. 2018; 2:12. PMC: 5665621. DOI: 10.1038/s41536-017-0014-3. View

3.
Lee H, Lee Y, Koh C, Phan-Quang G, Han X, Lay C . Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem Soc Rev. 2018; 48(3):731-756. DOI: 10.1039/c7cs00786h. View

4.
Lombardi J, Birke R . The theory of surface-enhanced Raman scattering. J Chem Phys. 2012; 136(14):144704. DOI: 10.1063/1.3698292. View

5.
Cialla-May D, Zheng X, Weber K, Popp J . Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev. 2017; 46(13):3945-3961. DOI: 10.1039/c7cs00172j. View