» Articles » PMID: 33505038

Seasonal Origin of the Thermal Maxima at the Holocene and the Last Interglacial

Overview
Journal Nature
Specialty Science
Date 2021 Jan 28
PMID 33505038
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Proxy reconstructions from marine sediment cores indicate peak temperatures in the first half of the last and current interglacial periods (the thermal maxima of the Holocene epoch, 10,000 to 6,000 years ago, and the last interglacial period, 128,000 to 123,000 years ago) that arguably exceed modern warmth. By contrast, climate models simulate monotonic warming throughout both periods. This substantial model-data discrepancy undermines confidence in both proxy reconstructions and climate models, and inhibits a mechanistic understanding of recent climate change. Here we show that previous global reconstructions of temperature in the Holocene and the last interglacial period reflect the evolution of seasonal, rather than annual, temperatures and we develop a method of transforming them to mean annual temperatures. We further demonstrate that global mean annual sea surface temperatures have been steadily increasing since the start of the Holocene (about 12,000 years ago), first in response to retreating ice sheets (12 to 6.5 thousand years ago), and then as a result of rising greenhouse gas concentrations (0.25 ± 0.21 degrees Celsius over the past 6,500 years or so). However, mean annual temperatures during the last interglacial period were stable and warmer than estimates of temperatures during the Holocene, and we attribute this to the near-constant greenhouse gas levels and the reduced extent of ice sheets. We therefore argue that the climate of the Holocene differed from that of the last interglacial period in two ways: first, larger remnant glacial ice sheets acted to cool the early Holocene, and second, rising greenhouse gas levels in the late Holocene warmed the planet. Furthermore, our reconstructions demonstrate that the modern global temperature has exceeded annual levels over the past 12,000 years and probably approaches the warmth of the last interglacial period (128,000 to 115,000 years ago).

Citing Articles

Global mean sea level likely higher than present during the holocene.

Creel R, Austermann J, Kopp R, Khan N, Albrecht T, Kingslake J Nat Commun. 2024; 15(1):10731.

PMID: 39737914 PMC: 11685612. DOI: 10.1038/s41467-024-54535-0.


Climate change effect on the widely distributed Palearctic plant bug species (Insecta: Heteroptera: Miridae).

Namyatova A, Dzhelali P, Tyts V, Popkov A PeerJ. 2024; 12:e18377.

PMID: 39588005 PMC: 11587874. DOI: 10.7717/peerj.18377.


Tropical Andean climate variations since the last deglaciation.

Zhao B, Russell J, Blaus A, Nascimento M, Freeman A, Bush M Proc Natl Acad Sci U S A. 2024; 121(34):e2320143121.

PMID: 39133850 PMC: 11348159. DOI: 10.1073/pnas.2320143121.


Carbon and oxygen isotopes in mummified wood reveal warmer and wetter winters in the Siberian Arctic 3000 years ago.

Schubert B, Lukens W, Moore C, Zimov N, Zimov S, Jahren A Sci Rep. 2024; 14(1):17189.

PMID: 39060309 PMC: 11282271. DOI: 10.1038/s41598-024-67947-1.


Spatial patterns of Holocene temperature changes over mid-latitude Eurasia.

Jiang J, Meng B, Wang H, Liu H, Song M, He Y Nat Commun. 2024; 15(1):1507.

PMID: 38374274 PMC: 10876552. DOI: 10.1038/s41467-024-45883-y.


References
1.
Kaufman D, McKay N, Routson C, Erb M, Datwyler C, Sommer P . Holocene global mean surface temperature, a multi-method reconstruction approach. Sci Data. 2020; 7(1):201. PMC: 7327079. DOI: 10.1038/s41597-020-0530-7. View

2.
Kaufman D, McKay N, Routson C, Erb M, Davis B, Heiri O . Publisher Correction: A global database of Holocene paleotemperature records. Sci Data. 2020; 7(1):183. PMC: 7295788. DOI: 10.1038/s41597-020-0515-6. View

3.
Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner B, Timmermann A . The Holocene temperature conundrum. Proc Natl Acad Sci U S A. 2014; 111(34):E3501-5. PMC: 4151775. DOI: 10.1073/pnas.1407229111. View

4.
Hoffman J, Clark P, Parnell A, He F . Regional and global sea-surface temperatures during the last interglaciation. Science. 2017; 355(6322):276-279. DOI: 10.1126/science.aai8464. View

5.
Mann M, Zhang Z, Hughes M, Bradley R, Miller S, Rutherford S . Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci U S A. 2008; 105(36):13252-7. PMC: 2527990. DOI: 10.1073/pnas.0805721105. View