» Articles » PMID: 33504903

Quantification of Stroke Lesion Volume Using Epidural EEG in a Cerebral Ischaemic Rat Model

Overview
Journal Sci Rep
Specialty Science
Date 2021 Jan 28
PMID 33504903
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Precise monitoring of the brain after a stroke is essential for clinical decision making. Due to the non-invasive nature and high temporal resolution of electroencephalography (EEG), it is widely used to evaluate real-time cortical activity. In this study, we investigated the stroke-related EEG biomarkers and developed a predictive model for quantifying the structural brain damage in a focal cerebral ischaemic rat model. We enrolled 31 male Sprague-Dawley rats and randomly assigned them to mild stroke, moderate stroke, severe stroke, and control groups. We induced photothrombotic stroke targeting the right auditory cortex. We then acquired EEG signal responses to sound stimuli (frequency linearly increasing from 8 to 12 kHz with 750 ms duration). Power spectral analysis revealed a significant correlation of the relative powers of alpha, theta, delta, delta/alpha ratio, and (delta + theta)/(alpha + beta) ratio with the stroke lesion volume. The auditory evoked potential analysis revealed a significant association of amplitude and latency with stroke lesion volume. Finally, we developed a multiple regression model combining EEG predictors for quantifying the ischaemic lesion (R = 0.938, p value < 0.001). These findings demonstrate the potential application of EEG as a valid modality for monitoring the brain after a stroke.

Citing Articles

An Alternative Photothrombotic Model of Transient Ischemic Attack.

Kalyuzhnaya Y, Logvinov A, Pashkevich S, Golubova N, Seryogina E, Potapova E Transl Stroke Res. 2024; .

PMID: 39069596 DOI: 10.1007/s12975-024-01285-2.


Constructing a Transient Ischemia Attack Model Utilizing Flexible Spatial Targeting Photothrombosis with Real-Time Blood Flow Imaging Feedback.

Zhu X, Yi Z, Li R, Wang C, Zhu W, Ma M Int J Mol Sci. 2024; 25(14).

PMID: 39062800 PMC: 11277306. DOI: 10.3390/ijms25147557.


Modeling transient ischemic attack via photothrombosis.

Kalyuzhnaya Y, Khaitin A, Demyanenko S Biophys Rev. 2023; 15(5):1279-1286.

PMID: 37974996 PMC: 10643708. DOI: 10.1007/s12551-023-01121-1.


Dexmedetomidine-mediated sleep phase modulation ameliorates motor and cognitive performance in a chronic blast-injured mouse model.

Bibineyshvili Y, Schiff N, Calderon D Front Neurol. 2022; 13:1040975.

PMID: 36388181 PMC: 9663850. DOI: 10.3389/fneur.2022.1040975.


The focused quantitative EEG bio-marker in studying childhood atrophic encephalopathy.

Richard S, Gabriel S, John S, Emmanuel M, John-Mary V Sci Rep. 2022; 12(1):13437.

PMID: 35927445 PMC: 9352776. DOI: 10.1038/s41598-022-17062-w.

References
1.
Castaneda R, Natarajan S, Jeong S, Hong B, Kang T . Electrophysiological changes in auditory evoked potentials in rats with salicylate-induced tinnitus. Brain Res. 2019; 1715:235-244. DOI: 10.1016/j.brainres.2019.04.004. View

2.
Motto C, Ciccone A, Aritzu E, Boccardi E, De Grandi C, Piana A . Hemorrhage after an acute ischemic stroke.MAST-I Collaborative Group. Stroke. 1999; 30(4):761-4. DOI: 10.1161/01.str.30.4.761. View

3.
van Putten M, Hofmeijer J . EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications. J Clin Neurophysiol. 2016; 33(3):203-10. DOI: 10.1097/WNP.0000000000000272. View

4.
Agoston D . How to Translate Time? The Temporal Aspect of Human and Rodent Biology. Front Neurol. 2017; 8:92. PMC: 5355425. DOI: 10.3389/fneur.2017.00092. View

5.
Boyd L, Hayward K, Ward N, Stinear C, Rosso C, Fisher R . Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017; 12(5):480-493. PMC: 6791523. DOI: 10.1177/1747493017714176. View