» Articles » PMID: 33496723

Pathogenic Mutations in the Kinesin-3 Motor KIF1A Diminish Force Generation and Movement Through Allosteric Mechanisms

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2021 Jan 26
PMID 33496723
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

The kinesin-3 motor KIF1A functions in neurons, where its fast and superprocessive motility facilitates long-distance transport, but little is known about its force-generating properties. Using optical tweezers, we demonstrate that KIF1A stalls at an opposing load of ~3 pN but more frequently detaches at lower forces. KIF1A rapidly reattaches to the microtubule to resume motion due to its class-specific K-loop, resulting in a unique clustering of force generation events. To test the importance of neck linker docking in KIF1A force generation, we introduced mutations linked to human neurodevelopmental disorders. Molecular dynamics simulations predict that V8M and Y89D mutations impair neck linker docking. Indeed, both mutations dramatically reduce the force generation of KIF1A but not the motor's ability to rapidly reattach to the microtubule. Although both mutations relieve autoinhibition of the full-length motor, the mutant motors display decreased velocities, run lengths, and landing rates and delayed cargo transport in cells. These results advance our understanding of how mutations in KIF1A can manifest in disease.

Citing Articles

KIF1C activates and extends dynein movement through the FHF cargo adapter.

Abid Ali F, Zwetsloot A, Stone C, Morgan T, Wademan R, Carter A Nat Struct Mol Biol. 2025; .

PMID: 39747486 DOI: 10.1038/s41594-024-01418-z.


DNA tensiometer reveals catch-bond detachment kinetics of kinesin-1, -2 and -3.

Noell C, Ma T, Jiang R, McKinley S, Hancock W bioRxiv. 2024; .

PMID: 39677767 PMC: 11642903. DOI: 10.1101/2024.12.03.626575.


Kinesin-like motor protein KIF23 maintains neural stem and progenitor cell pools in the developing cortex.

Naher S, Iemura K, Miyashita S, Hoshino M, Tanaka K, Niwa S EMBO J. 2024; 44(2):331-355.

PMID: 39632980 PMC: 11729872. DOI: 10.1038/s44318-024-00327-7.


Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model.

Kita T, Sasaki K, Niwa S Biophys J. 2024; 124(1):205-214.

PMID: 39604259 PMC: 11739925. DOI: 10.1016/j.bpj.2024.11.3312.


Mechanism and regulation of kinesin motors.

Yildiz A Nat Rev Mol Cell Biol. 2024; 26(2):86-103.

PMID: 39394463 DOI: 10.1038/s41580-024-00780-6.


References
1.
Cao L, Wang W, Jiang Q, Wang C, Knossow M, Gigant B . The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement. Nat Commun. 2014; 5:5364. DOI: 10.1038/ncomms6364. View

2.
Siddiqui N, Zwetsloot A, Bachmann A, Roth D, Hussain H, Brandt J . PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport. Nat Commun. 2019; 10(1):2693. PMC: 6584639. DOI: 10.1038/s41467-019-10644-9. View

3.
Hirokawa N, Noda Y, Tanaka Y, Niwa S . Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009; 10(10):682-96. DOI: 10.1038/nrm2774. View

4.
CASE R, Rice S, Hart C, Ly B, Vale R . Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr Biol. 2000; 10(3):157-60. DOI: 10.1016/s0960-9822(00)00316-x. View

5.
Yonekawa Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y . Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol. 1998; 141(2):431-41. PMC: 2148442. DOI: 10.1083/jcb.141.2.431. View