» Articles » PMID: 33490902

High-throughput Rational Design of the Remdesivir Binding Site in the RdRp of SARS-CoV-2: Implications for Potential Resistance

Overview
Journal iScience
Publisher Cell Press
Date 2021 Jan 25
PMID 33490902
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

The use of remdesivir to treat COVID-19 will likely continue before clinical trials are completed. Due to the lengthening pandemic and evolving nature of the virus, predicting potential residues prone to mutation is crucial for the management of remdesivir resistance. Using a rational ligand-based interface design complemented with mutational mapping, we generated a total of 100,000 mutations and provided insight into the functional outcomes of mutations in the remdesivir-binding site in nsp12 subunit of RdRp. After designing 46 residues in the remdesivir-binding site of nsp12, the designs retained 97%-98% sequence identity, suggesting that very few mutations in nsp12 are required for SARS-CoV-2 to attain remdesivir resistance. Several mutants displayed decreased binding affinity to remdesivir, suggesting drug resistance. These hotspot residues had a higher probability of undergoing selective mutation and thus conferring remdesivir resistance. Identifying the potential residues prone to mutation improves our understanding of SARS-CoV-2 drug resistance and COVID-19 pathogenesis.

Citing Articles

SARS-CoV-2 drug resistance and therapeutic approaches.

Batool S, Chokkakula S, Jeong J, Baek Y, Song M Heliyon. 2025; 11(2):e41980.

PMID: 39897928 PMC: 11786845. DOI: 10.1016/j.heliyon.2025.e41980.


High resistance barrier and prophylactic protection in preclinical models of SARS-CoV-2 with two siRNA combination.

Anglero-Rodriguez Y, Lempp F, Subramanian M, McIninch J, Schlegel M, Bohan D Nucleic Acids Res. 2024; 53(1.

PMID: 39657790 PMC: 11724309. DOI: 10.1093/nar/gkae1195.


Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement.

Saha S, Bhattacharya M, Lee S, Chakraborty C J Microbiol. 2024; 62(10):811-828.

PMID: 39292378 DOI: 10.1007/s12275-024-00168-3.


Computational investigation of novel synthetic analogs of C-1'β substituted remdesivir against RNA-dependent RNA-polymerase of SARS-CoV-2.

Cardoza S, Singh A, Sur S, Singh M, Dubey K, Samanta S Heliyon. 2024; 10(17):e36786.

PMID: 39286185 PMC: 11402944. DOI: 10.1016/j.heliyon.2024.e36786.


Plausible mechanism of drug resistance and side-effects of COVID-19 therapeutics: a bottleneck for its eradication.

Das S, Nath S, Shahjahan , Dey S Daru. 2024; 32(2):801-823.

PMID: 39026019 PMC: 11554973. DOI: 10.1007/s40199-024-00524-z.


References
1.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-574. PMC: 7159086. DOI: 10.1016/S0140-6736(20)30251-8. View

2.
Callaway E . The coronavirus is mutating - does it matter?. Nature. 2020; 585(7824):174-177. DOI: 10.1038/d41586-020-02544-6. View

3.
Romero P, Arnold F . Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol. 2009; 10(12):866-76. PMC: 2997618. DOI: 10.1038/nrm2805. View

4.
Goldhill D, Te Velthuis A, Fletcher R, Langat P, Zambon M, Lackenby A . The mechanism of resistance to favipiravir in influenza. Proc Natl Acad Sci U S A. 2018; 115(45):11613-11618. PMC: 6233120. DOI: 10.1073/pnas.1811345115. View

5.
Furuta Y, Gowen B, Takahashi K, Shiraki K, Smee D, Barnard D . Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013; 100(2):446-54. PMC: 3880838. DOI: 10.1016/j.antiviral.2013.09.015. View