» Articles » PMID: 33470113

Spatially Controlled Octahedral Rotations and Metal-Insulator Transitions in Nickelate Superlattices

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2021 Jan 20
PMID 33470113
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The properties of correlated oxides can be manipulated by forming short-period superlattices since the layer thicknesses are comparable with the typical length scales of the involved correlations and interface effects. Herein, we studied the metal-insulator transitions (MITs) in tetragonal NdNiO/SrTiO superlattices by controlling the NdNiO layer thickness, in the unit cell, spanning the length scale of the interfacial octahedral coupling. Scanning transmission electron microscopy reveals a crossover from a modulated octahedral superstructure at = 8 to a uniform nontilt pattern at = 4, accompanied by a drastically weakened insulating ground state. Upon further reducing the predominant dimensionality effect continuously raises the MIT temperature, while leaving the antiferromagnetic transition temperature unaltered down to = 2. Remarkably, the MIT can be enhanced by imposing a sufficiently large strain even with strongly suppressed octahedral rotations. Our results demonstrate the relevance for the control of oxide functionalities at reduced dimensions.

Citing Articles

Improved conduction and orbital polarization in ultrathin LaNiO sublayer by modulating octahedron rotation in LaNiO/CaTiO superlattices.

Shi W, Zhang J, Yu B, Zheng J, Wang M, Li Z Nat Commun. 2024; 15(1):9931.

PMID: 39548075 PMC: 11567965. DOI: 10.1038/s41467-024-54311-0.


Thickness-Dependent Interface Polarity in Infinite-Layer Nickelate Superlattices.

Yang C, Ortiz R, Wang Y, Sigle W, Wang H, Benckiser E Nano Lett. 2023; 23(8):3291-3297.

PMID: 37027232 PMC: 10141440. DOI: 10.1021/acs.nanolett.3c00192.


Dimensionality-Controlled Evolution of Charge-Transfer Energy in Digital Nickelates Superlattices.

Lu X, Liu J, Zhang N, Xie B, Yang S, Liu W Adv Sci (Weinh). 2022; 9(21):e2105864.

PMID: 35603969 PMC: 9313943. DOI: 10.1002/advs.202105864.


Emergent interface vibrational structure of oxide superlattices.

Hoglund E, Bao D, OHara A, Makarem S, Piontkowski Z, Matson J Nature. 2022; 601(7894):556-561.

PMID: 35082421 PMC: 8791828. DOI: 10.1038/s41586-021-04238-z.

References
1.
Breckenfeld E, Chen Z, Damodaran A, Martin L . Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO₃ thin films. ACS Appl Mater Interfaces. 2014; 6(24):22436-44. DOI: 10.1021/am506436s. View

2.
Bisogni V, Catalano S, Green R, Gibert M, Scherwitzl R, Huang Y . Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates. Nat Commun. 2016; 7:13017. PMC: 5062575. DOI: 10.1038/ncomms13017. View

3.
King P, Wei H, Nie Y, Uchida M, Adamo C, Zhu S . Atomic-scale control of competing electronic phases in ultrathin LaNiO₃. Nat Nanotechnol. 2014; 9(6):443-7. DOI: 10.1038/nnano.2014.59. View

4.
Scherwitzl R, Gariglio S, Gabay M, Zubko P, Gibert M, Triscone J . Metal-insulator transition in ultrathin LaNiO3 films. Phys Rev Lett. 2011; 106(24):246403. DOI: 10.1103/PhysRevLett.106.246403. View

5.
Chakhalian J, Rondinelli J, Liu J, Gray B, Kareev M, Moon E . Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. Phys Rev Lett. 2011; 107(11):116805. DOI: 10.1103/PhysRevLett.107.116805. View