» Articles » PMID: 33460596

Influence of Membrane-cortex Linkers on the Extrusion of Membrane Tubes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2021 Jan 18
PMID 33460596
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The cell membrane is an inhomogeneous system composed of phospholipids, sterols, carbohydrates, and proteins that can be directly attached to underlying cytoskeleton. The protein linkers between the membrane and the cytoskeleton are believed to have a profound effect on the mechanical properties of the cell membrane and its ability to reshape. Here, we investigate the role of membrane-cortex linkers on the extrusion of membrane tubes using computer simulations and experiments. In simulations, we find that the force for tube extrusion has a nonlinear dependence on the density of membrane-cortex attachments: at a range of low and intermediate linker densities, the force is not significantly influenced by the presence of the membrane-cortex attachments and resembles that of the bare membrane. For large concentrations of linkers, however, the force substantially increases compared with the bare membrane. In both cases, the linkers provided membrane tubes with increased stability against coalescence. We then pulled tubes from HEK cells using optical tweezers for varying expression levels of the membrane-cortex attachment protein Ezrin. In line with simulations, we observed that overexpression of Ezrin led to an increased extrusion force, while Ezrin depletion had a negligible effect on the force. Our results shed light on the importance of local protein rearrangements for membrane reshaping at nanoscopic scales.

Citing Articles

Making the cut: Multiscale simulation of membrane remodeling.

Beiter J, Voth G Curr Opin Struct Biol. 2024; 87:102831.

PMID: 38740001 PMC: 11283976. DOI: 10.1016/j.sbi.2024.102831.


Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes.

Yan Q, Gomis Perez C, Karatekin E Physiology (Bethesda). 2024; 39(4).

PMID: 38501962 PMC: 11368524. DOI: 10.1152/physiol.00007.2024.


Tension-induced adhesion mode switching: the interplay between focal adhesions and clathrin-containing adhesion complexes.

Djakbarova U, Madraki Y, Chan E, Wu T, Atreaga-Muniz V, Akatay A bioRxiv. 2024; .

PMID: 38370749 PMC: 10871318. DOI: 10.1101/2024.02.07.579324.


Viscoelastic phenotyping of red blood cells.

Gironella-Torrent M, Bergamaschi G, Sorkin R, Wuite G, Ritort F Biophys J. 2024; 123(7):770-781.

PMID: 38268191 PMC: 10995428. DOI: 10.1016/j.bpj.2024.01.019.


Correlation of Plasma Membrane Microviscosity and Cell Stiffness Revealed via Fluorescence-Lifetime Imaging and Atomic Force Microscopy.

Efremov Y, Shimolina L, Gulin A, Ignatova N, Gubina M, Kuimova M Cells. 2023; 12(21).

PMID: 37947661 PMC: 10650173. DOI: 10.3390/cells12212583.


References
1.
Weichsel J, Geissler P . The More the Tubular: Dynamic Bundling of Actin Filaments for Membrane Tube Formation. PLoS Comput Biol. 2016; 12(7):e1004982. PMC: 4934920. DOI: 10.1371/journal.pcbi.1004982. View

2.
Koster G, Cacciuto A, Derenyi I, Frenkel D, Dogterom M . Force barriers for membrane tube formation. Phys Rev Lett. 2005; 94(6):068101. DOI: 10.1103/PhysRevLett.94.068101. View

3.
Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H . Nanotubular highways for intercellular organelle transport. Science. 2004; 303(5660):1007-10. DOI: 10.1126/science.1093133. View

4.
Gumi-Audenis B, Costa L, Ferrer-Tasies L, Ratera I, Ventosa N, Sanz F . Pulling lipid tubes from supported bilayers unveils the underlying substrate contribution to the membrane mechanics. Nanoscale. 2018; 10(30):14763-14770. DOI: 10.1039/c8nr03249a. View

5.
Fievet B, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D . Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol. 2004; 164(5):653-9. PMC: 2172172. DOI: 10.1083/jcb.200307032. View