» Articles » PMID: 33453648

Deep Learning Powers Cancer Diagnosis in Digital Pathology

Overview
Specialty Radiology
Date 2021 Jan 16
PMID 33453648
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Technological innovation has accelerated the pathological diagnostic process for cancer, especially in digitizing histopathology slides and incorporating deep learning-based approaches to mine the subvisual morphometric phenotypes for improving pathology diagnosis. In this perspective paper, we provide an overview on major deep learning approaches for digital pathology and discuss challenges and opportunities of such approaches to aid cancer diagnosis in digital pathology. In particular, the emerging graph neural network may further improve the performance and interpretability of deep learning in digital pathology.

Citing Articles

Semi-supervised tissue segmentation from histopathological images with consistency regularization and uncertainty estimation.

Sudhamsh G, Girisha S, Rashmi R Sci Rep. 2025; 15(1):6506.

PMID: 39987243 PMC: 11846888. DOI: 10.1038/s41598-025-90221-x.


The Co-Piloting Model for Using Artificial Intelligence Systems in Medicine: Implementing the Constrained-Disorder-Principle-Based Second-Generation System.

Ilan Y Bioengineering (Basel). 2024; 11(11).

PMID: 39593770 PMC: 11592301. DOI: 10.3390/bioengineering11111111.


Deep learning identifies histopathologic changes in bladder cancers associated with smoke exposure status.

Eminaga O, Lau H, Shkolyar E, Wardelmann E, Abbas M PLoS One. 2024; 19(7):e0305135.

PMID: 39083547 PMC: 11290674. DOI: 10.1371/journal.pone.0305135.


Artificial Intelligence-Based Management of Adult Chronic Myeloid Leukemia: Where Are We and Where Are We Going?.

Bernardi S, Vallati M, Gatta R Cancers (Basel). 2024; 16(5).

PMID: 38473210 PMC: 10930728. DOI: 10.3390/cancers16050848.


Sensor extended imaging workflow for creating fit for purpose models in basic and applied cell biology.

Schueler J, Sjoman H, Kriesi C Commun Biol. 2024; 7(1):170.

PMID: 38341479 PMC: 10858951. DOI: 10.1038/s42003-024-05843-0.


References
1.
Ren S, He K, Girshick R, Sun J . Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell. 2016; 39(6):1137-1149. DOI: 10.1109/TPAMI.2016.2577031. View

2.
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu P . A Comprehensive Survey on Graph Neural Networks. IEEE Trans Neural Netw Learn Syst. 2020; 32(1):4-24. DOI: 10.1109/TNNLS.2020.2978386. View

3.
Karras T, Laine S, Aila T . A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans Pattern Anal Mach Intell. 2020; 43(12):4217-4228. DOI: 10.1109/TPAMI.2020.2970919. View

4.
Serag A, Ion-Margineanu A, Qureshi H, McMillan R, Martin M, Diamond J . Translational AI and Deep Learning in Diagnostic Pathology. Front Med (Lausanne). 2019; 6:185. PMC: 6779702. DOI: 10.3389/fmed.2019.00185. View

5.
Hinton G, Salakhutdinov R . Reducing the dimensionality of data with neural networks. Science. 2006; 313(5786):504-7. DOI: 10.1126/science.1127647. View