Wu C, Restrepo D, Nakayama L, Ribeiro L, Shuai Z, Barboza N
Sci Data. 2025; 12(1):323.
PMID: 39987104
PMC: 11846882.
DOI: 10.1038/s41597-025-04627-3.
Leon K, Mugabi T, Tran T, Magembe H, Skipper C
Med Mycol Case Rep. 2024; 46:100680.
PMID: 39583741
PMC: 11582427.
DOI: 10.1016/j.mmcr.2024.100680.
Shahzad R, Mehmood A, Shabbir D, Siddiqui M
PLOS Digit Health. 2024; 3(11):e0000649.
PMID: 39514591
PMC: 11548746.
DOI: 10.1371/journal.pdig.0000649.
Malerbi F, Nakayama L, Prado P, Yamanaka F, Melo G, Regatieri C
Ann Transl Med. 2024; 12(5):89.
PMID: 39507460
PMC: 11534741.
DOI: 10.21037/atm-24-73.
Van T, Thi H
Taiwan J Ophthalmol. 2024; 14(3):394-402.
PMID: 39430352
PMC: 11488799.
DOI: 10.4103/tjo.TJO-D-23-00101.
Advancing healthcare with artificial intelligence: diagnostic accuracy of machine learning algorithm in diagnosis of diabetic retinopathy in the Brazilian population.
Dos Reis M, Kunas C, da Silva Araujo T, Schneiders J, de Azevedo P, Nakayama L
Diabetol Metab Syndr. 2024; 16(1):209.
PMID: 39210394
PMC: 11360296.
DOI: 10.1186/s13098-024-01447-0.
Impact of Gold-Standard Label Errors on Evaluating Performance of Deep Learning Models in Diabetic Retinopathy Screening: Nationwide Real-World Validation Study.
Wang Y, Han X, Li C, Luo L, Yin Q, Zhang J
J Med Internet Res. 2024; 26:e52506.
PMID: 39141915
PMC: 11358665.
DOI: 10.2196/52506.
Ophthalmology and Artificial Intelligence: Present or Future? A Diabetic Retinopathy Screening Perspective of the Pursuit for Fairness.
Nakayama L, Ribeiro L, Malerbi F, Regatieri C
Front Ophthalmol (Lausanne). 2024; 2:898181.
PMID: 38983555
PMC: 11182262.
DOI: 10.3389/fopht.2022.898181.
Image quality comparison of AirDoc portable retina camera versus eyer in a diabetic retinopathy screening program.
Brant R, Nakayama L, de Oliveira T, de Oliveira J, Ribeiro L, Richter G
Int J Retina Vitreous. 2024; 10(1):43.
PMID: 38877585
PMC: 11177418.
DOI: 10.1186/s40942-024-00559-z.
Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera.
Kubin A, Huhtinen P, Ohtonen P, Keskitalo A, Wirkkala J, Hautala N
Ann Med. 2024; 56(1):2352018.
PMID: 38738798
PMC: 11095279.
DOI: 10.1080/07853890.2024.2352018.
Automated Identification of Different Severity Levels of Diabetic Retinopathy Using a Handheld Fundus Camera and Single-Image Protocol.
Malerbi F, Nakayama L, Melo G, Stuchi J, Lencione D, Prado P
Ophthalmol Sci. 2024; 4(4):100481.
PMID: 38694494
PMC: 11060947.
DOI: 10.1016/j.xops.2024.100481.
Present and future screening programs for diabetic retinopathy: a narrative review.
Taha A, Dinesen S, Vergmann A, Grauslund J
Int J Retina Vitreous. 2024; 10(1):14.
PMID: 38310265
PMC: 10838429.
DOI: 10.1186/s40942-024-00534-8.
Deep learning-based fundus image analysis for cardiovascular disease: a review.
Chikumba S, Hu Y, Luo J
Ther Adv Chronic Dis. 2023; 14:20406223231209895.
PMID: 38028950
PMC: 10657535.
DOI: 10.1177/20406223231209895.
Evaluation of the Performance of a 3D-Printed Smartphone-Based Retinal Imaging Device as a Screening Tool for Retinal Pathology in Mozambique.
Varo R, Postigo M, Bila R, Dacal E, Chiconela H, Garcia-Villena J
Am J Trop Med Hyg. 2023; 109(5):1192-1198.
PMID: 37918001
PMC: 10622463.
DOI: 10.4269/ajtmh.23-0378.
Diabetic Retinopathy Screening Using Smartphone-Based Fundus Photography and Deep-Learning Artificial Intelligence in the Yucatan Peninsula: A Field Study.
Wroblewski J, Sanchez-Buenfil E, Inciarte M, Berdia J, Blake L, Wroblewski S
J Diabetes Sci Technol. 2023; 19(2):370-376.
PMID: 37641576
PMC: 11874329.
DOI: 10.1177/19322968231194644.
The Present and Future of Artificial Intelligence-Based Medical Image in Diabetes Mellitus: Focus on Analytical Methods and Limitations of Clinical Use.
Chun J, Kim H
J Korean Med Sci. 2023; 38(31):e253.
PMID: 37550811
PMC: 10412032.
DOI: 10.3346/jkms.2023.38.e253.
Single retinal image for diabetic retinopathy screening: performance of a handheld device with embedded artificial intelligence.
Penha F, Priotto B, Hennig F, Przysiezny B, Wiethorn B, Orsi J
Int J Retina Vitreous. 2023; 9(1):41.
PMID: 37430345
PMC: 10332010.
DOI: 10.1186/s40942-023-00477-6.
Diabetic Retinopathy Screening Using Non-Mydriatic Fundus Camera in Primary Health Care Settings - A Multicenter Study from Saudi Arabia.
Alabdulwahhab K
Int J Gen Med. 2023; 16:2255-2262.
PMID: 37304902
PMC: 10255608.
DOI: 10.2147/IJGM.S410197.
Prevalence of diabetic retinopathy in Brazil: a systematic review with meta-analysis.
Chagas T, Dos Reis M, Leivas G, Santos L, Gossenheimer A, Melo G
Diabetol Metab Syndr. 2023; 15(1):34.
PMID: 36864478
PMC: 9979496.
DOI: 10.1186/s13098-023-01003-2.
Applicability of portable retinal cameras and telemedicine as facilitating tools in screening diabetic retinopathy in the COVID-19 pandemic scenario.
Cyrino F, Ferronato S, Araujo S, Giachetto V, Saud L
Arq Bras Oftalmol. 2022; 87(2):0498.
PMID: 36350905
PMC: 11575754.
DOI: 10.5935/0004-2749.2021-0498.