» Articles » PMID: 33435159

Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2021 Jan 13
PMID 33435159
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Bone material strength is determined by several factors, such as bone mass, matrix composition, mineralization, architecture and shape. From a clinical perspective, bone fragility is classified as primary (i.e., genetic and rare) or secondary (i.e., acquired and common) osteoporosis. Understanding the mechanism of rare genetic bone fragility disorders not only advances medical knowledge on rare diseases, it may open doors for drug development for more common disorders (i.e., postmenopausal osteoporosis). In this review, we highlight the main disease mechanisms underlying the development of human bone fragility associated with low bone mass known to date. The pathways we focus on are type I collagen processing, WNT-signaling, TGF-ß signaling, the RANKL-RANK system and the osteocyte mechanosensing pathway. We demonstrate how the discovery of most of these pathways has led to targeted, pathway-specific treatments.

Citing Articles

Complex Analysis of Micronutrient Levels and Bone Mineral Density in Patients with Different Types of Osteogenesis Imperfecta.

Valeeva D, Akhiiarova K, Minniakhmetov I, Mokrysheva N, Khusainova R, Tyurin A Diagnostics (Basel). 2025; 15(3).

PMID: 39941180 PMC: 11817190. DOI: 10.3390/diagnostics15030250.


Postpartum multiple vertebral fractures in a patient with osteogenesis imperfecta type I: A case report and literature review.

Miyazaki Y, Hosokawa M, Kudo S, Onuma T, Orisaka M, Yoshida Y Case Rep Womens Health. 2024; 44:e00666.

PMID: 39635157 PMC: 11616087. DOI: 10.1016/j.crwh.2024.e00666.


Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis.

Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B Biomolecules. 2024; 14(8).

PMID: 39199358 PMC: 11352324. DOI: 10.3390/biom14080970.


Osteoporosis treatment: current drugs and future developments.

Chen Y, Jia L, Han T, Zhao Z, Yang J, Xiao J Front Pharmacol. 2024; 15:1456796.

PMID: 39188952 PMC: 11345277. DOI: 10.3389/fphar.2024.1456796.


The PATCH study: Prevalence of Hearing Loss During Ageing and Treatment Choices in Osteogenesis Imperfecta: A Danish Nationwide Register-Based Cohort Study.

Haumann S, Sorensen J, Schmidt J, Folkestad L Calcif Tissue Int. 2024; 115(3):260-268.

PMID: 39012488 PMC: 11333522. DOI: 10.1007/s00223-024-01253-w.


References
1.
Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J . A mutation in the 5'-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012; 91(2):349-57. PMC: 3415541. DOI: 10.1016/j.ajhg.2012.06.011. View

2.
Verbunt J, Seelen H, Vlaeyen J, van de Heijden G, Heuts P, Pons K . Disuse and deconditioning in chronic low back pain: concepts and hypotheses on contributing mechanisms. Eur J Pain. 2003; 7(1):9-21. DOI: 10.1016/s1090-3801(02)00071-x. View

3.
Yasuda H, Shima N, Nakagawa N, Mochizuki S, Yano K, Fujise N . Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998; 139(3):1329-37. DOI: 10.1210/endo.139.3.5837. View

4.
Korvala J, Juppner H, Makitie O, Sochett E, Schnabel D, Mora S . Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet. 2012; 13:26. PMC: 3374890. DOI: 10.1186/1471-2350-13-26. View

5.
Kanazawa K, Kudo A . Self-assembled RANK induces osteoclastogenesis ligand-independently. J Bone Miner Res. 2005; 20(11):2053-60. DOI: 10.1359/JBMR.050706. View