» Articles » PMID: 33431857

Important Contributions of Non-fossil Fuel Nitrogen Oxides Emissions

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Jan 12
PMID 33431857
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Since the industrial revolution, it has been assumed that fossil-fuel combustions dominate increasing nitrogen oxide (NO) emissions. However, it remains uncertain to the actual contribution of the non-fossil fuel NO to total NO emissions. Natural N isotopes of NO in precipitation (δN) have been widely employed for tracing atmospheric NO sources. Here, we compiled global δN observations to evaluate the relative importance of fossil and non-fossil fuel NO emissions. We found that regional differences in human activities directly influenced spatial-temporal patterns of δN variations. Further, isotope mass-balance and bottom-up calculations suggest that the non-fossil fuel NO accounts for 55 ± 7% of total NO emissions, reaching up to 21.6 ± 16.6Mt yr in East Asia, 7.4 ± 5.5Mt yr in Europe, and 21.8 ± 18.5Mt yr in North America, respectively. These results reveal the importance of non-fossil fuel NO emissions and provide direct evidence for making strategies on mitigating atmospheric NO pollution.

Citing Articles

Transforming CCTV cameras into NO sensors at city scale for adaptive policymaking.

Ibrahim M, Lyons T Sci Rep. 2025; 15(1):3640.

PMID: 39880905 PMC: 11779846. DOI: 10.1038/s41598-025-86532-8.


Effects of nitrogen deposition on the rhizosphere nitrogen-fixing bacterial community structure and assembly mechanisms in plantations.

Liu C, He Z, Chen Y, Xu Y, Tang W, Chen L Front Microbiol. 2024; 15:1414724.

PMID: 38957615 PMC: 11217174. DOI: 10.3389/fmicb.2024.1414724.


Theoretical Study of the NO Reduction Mechanism on Biochar Surfaces Modified by Li and Na Single Adsorption and OH Co-Adsorption.

Su Q, Ren F, Lu M, Zhao J, Zhu X, Shen T Molecules. 2024; 29(3).

PMID: 38338318 PMC: 10856491. DOI: 10.3390/molecules29030574.


Overestimated nitrogen loss from denitrification for natural terrestrial ecosystems in CMIP6 Earth System Models.

Feng M, Peng S, Wang Y, Ciais P, Goll D, Chang J Nat Commun. 2023; 14(1):3065.

PMID: 37244896 PMC: 10224944. DOI: 10.1038/s41467-023-38803-z.


Nitric Oxide (NO) as a Reagent for Topochemical Framework Transformation and Controlled NO Release in Covalent Organic Frameworks.

Emmerling S, Maschita J, Lotsch B J Am Chem Soc. 2023; 145(14):7800-7809.

PMID: 36976754 PMC: 10103124. DOI: 10.1021/jacs.2c11967.


References
1.
Zong Z, Wang X, Tian C, Chen Y, Fang Y, Zhang F . First Assessment of NO Sources at a Regional Background Site in North China Using Isotopic Analysis Linked with Modeling. Environ Sci Technol. 2017; 51(11):5923-5931. DOI: 10.1021/acs.est.6b06316. View

2.
Jaegle L, Steinberger L, Martin R, Chance K . Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss. 2005; 130:407-23. DOI: 10.1039/b502128f. View

3.
Fowler D, Coyle M, Skiba U, Sutton M, Neil Cape J, Reis S . The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B Biol Sci. 2013; 368(1621):20130164. PMC: 3682748. DOI: 10.1098/rstb.2013.0164. View

4.
Sutton M, Oenema O, Erisman J, Leip A, van Grinsven H, Winiwarter W . Too much of a good thing. Nature. 2011; 472(7342):159-61. DOI: 10.1038/472159a. View

5.
Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z . Enhanced nitrogen deposition over China. Nature. 2013; 494(7438):459-62. DOI: 10.1038/nature11917. View