» Articles » PMID: 33430187

Initiated Chemical Vapor Deposition (iCVD) Functionalized Polylactic Acid-Marine Algae Composite Patch for Bone Tissue Engineering

Overview
Publisher MDPI
Date 2021 Jan 12
PMID 33430187
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The current study aimed to describe the fabrication of a composite patch by incorporating marine algae powders (MAPs) into poly-lactic acid (PLA) for bone tissue engineering. The prepared composite patch was functionalized with the co-polymer, poly (2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) (p(HEMA-co-EGDMA)) via initiated chemical vapor deposition (iCVD) to improve its wettability and overall biocompatibility. The iCVD functionalized MAP-PLA composite patch showed superior cell interaction of human osteoblasts. Following the surface functionalization by p(HEMA-co-EGDMA) via the iCVD technique, a highly hydrophilic patch was achieved without tailoring any morphological and structural properties. Moreover, the iCVD modified composite patch exhibited ideal cell adhesion for human osteoblasts, thus making the proposed patch suitable for potential biomedical applications including bone tissue engineering, especially in the fields of dentistry and orthopedy.

Citing Articles

Advances in Antibacterial Polymer Coatings Synthesized via Chemical Vapor Deposition.

Shu H, Chen P, Yang R Chem Bio Eng. 2025; 1(6):516-534.

PMID: 39974606 PMC: 11835172. DOI: 10.1021/cbe.4c00043.


Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals.

Jain A, Pal S, Li S, Abbott N, Yang R Sci Adv. 2024; 10(45):eadp5573.

PMID: 39504375 PMC: 11540036. DOI: 10.1126/sciadv.adp5573.


Prospective applications of bioactive materials in orthopedic therapies: A review.

Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B Heliyon. 2024; 10(16):e36152.

PMID: 39247306 PMC: 11379564. DOI: 10.1016/j.heliyon.2024.e36152.


Antibacterial properties of marine algae incorporated polylactide acid membranes as an alternative to clinically applied different collagen membranes.

Weitkamp J, El Hajjami S, Acil Y, Spille J, Sayin S, Sukran Okudan E J Mater Sci Mater Med. 2024; 35(1):9.

PMID: 38285196 PMC: 10824850. DOI: 10.1007/s10856-024-06778-y.


Marine Algae Incorporated Polylactide Acid Patch: Novel Candidate for Targeting Osteosarcoma Cells without Impairing the Osteoblastic Proliferation.

Veziroglu S, Ayna M, Kohlhaas T, Sayin S, Fiutowski J, Mishra Y Polymers (Basel). 2021; 13(6).

PMID: 33801946 PMC: 8001715. DOI: 10.3390/polym13060847.

References
1.
Llopis-Hernandez V, Rico P, Ballester-Beltran J, Moratal D, Salmeron-Sanchez M . Role of surface chemistry in protein remodeling at the cell-material interface. PLoS One. 2011; 6(5):e19610. PMC: 3090403. DOI: 10.1371/journal.pone.0019610. View

2.
Terriza A, Vilches-Perez J, Gonzalez-Caballero J, de la Orden E, Yubero F, Barranco A . Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction. Materials (Basel). 2017; 7(3):1687-1708. PMC: 5453252. DOI: 10.3390/ma7031687. View

3.
Garrison T, Murawski A, Quirino R . Bio-Based Polymers with Potential for Biodegradability. Polymers (Basel). 2019; 8(7). PMC: 6432354. DOI: 10.3390/polym8070262. View

4.
Vatansever E, Arslan D, Nofar M . Polylactide cellulose-based nanocomposites. Int J Biol Macromol. 2019; 137:912-938. DOI: 10.1016/j.ijbiomac.2019.06.205. View

5.
Mead T, Lefebvre V . Proliferation assays (BrdU and EdU) on skeletal tissue sections. Methods Mol Biol. 2014; 1130:233-243. PMC: 4074019. DOI: 10.1007/978-1-62703-989-5_17. View